Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
PLoS Comput Biol ; 20(7): e1012241, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985831

RESUMO

Dimension reduction tools preserving similarity and graph structure such as t-SNE and UMAP can capture complex biological patterns in high-dimensional data. However, these tools typically are not designed to separate effects of interest from unwanted effects due to confounders. We introduce the partial embedding (PARE) framework, which enables removal of confounders from any distance-based dimension reduction method. We then develop partial t-SNE and partial UMAP and apply these methods to genomic and neuroimaging data. For lower-dimensional visualization, our results show that the PARE framework can remove batch effects in single-cell sequencing data as well as separate clinical and technical variability in neuroimaging measures. We demonstrate that the PARE framework extends dimension reduction methods to highlight biological patterns of interest while effectively removing confounding effects.

2.
Neuroimaging Clin N Am ; 34(3): 359-373, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942521

RESUMO

Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.


Assuntos
Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Biomarcadores , Inflamação/diagnóstico por imagem , Neuroimagem/métodos , Veias Cerebrais/diagnóstico por imagem
3.
Front Neurol ; 15: 1330203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854960

RESUMO

Ultra-low field (ULF) magnetic resonance imaging (MRI) holds the potential to make MRI more accessible, given its cost-effectiveness, reduced power requirements, and portability. However, signal-to-noise ratio (SNR) drops with field strength, necessitating imaging with lower resolution and longer scan times. This study introduces a novel Fourier-based Super Resolution (FouSR) approach, designed to enhance the resolution of ULF MRI images with minimal increase in total scan time. FouSR combines spatial frequencies from two orthogonal ULF images of anisotropic resolution to create an isotropic T2-weighted fluid-attenuated inversion recovery (FLAIR) image. We hypothesized that FouSR could effectively recover information from under-sampled slice directions, thereby improving the delineation of multiple sclerosis (MS) lesions and other significant anatomical features. Importantly, the FouSR algorithm can be implemented on the scanner with changes to the k-space trajectory. Paired ULF (Hyperfine SWOOP, 0.064 tesla) and high field (Siemens, Skyra, 3 Tesla) FLAIR scans were collected on the same day from a phantom and a cohort of 10 participants with MS or suspected MS (6 female; mean ± SD age: 44.1 ± 4.1). ULF scans were acquired along both coronal and axial planes, featuring an in-plane resolution of 1.7 mm × 1.7 mm with a slice thickness of 5 mm. FouSR was evaluated against registered ULF coronal and axial scans, their average (ULF average) and a gold standard SR (ANTs SR). FouSR exhibited higher SNR (47.96 ± 12.6) compared to ULF coronal (36.7 ± 12.2) and higher lesion conspicuity (0.12 ± 0.06) compared to ULF axial (0.13 ± 0.07) but did not exhibit any significant differences contrast-to-noise-ratio (CNR) compared to other methods in patient scans. However, FouSR demonstrated superior image sharpness (0.025 ± 0.0040) compared to all other techniques (ULF coronal 0.021 ± 0.0037, q = 5.9, p-adj. = 0.011; ULF axial 0.018 ± 0.0026, q = 11.1, p-adj. = 0.0001; ULF average 0.019 ± 0.0034, q = 24.2, p-adj. < 0.0001) and higher lesion sharpness (-0.97 ± 0.31) when compared to the ULF average (-1.02 ± 0.37, t(543) = -10.174, p = <0.0001). Average blinded qualitative assessment by three experienced MS neurologists showed no significant difference in WML and sulci or gyri visualization between FouSR and other methods. FouSR can, in principle, be implemented on the scanner to produce clinically useful FLAIR images at higher resolution on the fly, providing a valuable tool for visualizing lesions and other anatomical structures in MS.

4.
Brain Commun ; 6(3): fcae158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818331

RESUMO

Cortical lesions are common in multiple sclerosis and are associated with disability and progressive disease. We asked whether cortical lesions continue to form in people with stable white matter lesions and whether the association of cortical lesions with worsening disability relates to pre-existing or new cortical lesions. Fifty adults with multiple sclerosis and no new white matter lesions in the year prior to enrolment (33 relapsing-remitting and 17 progressive) and a comparison group of nine adults who had formed at least one new white matter lesion in the year prior to enrolment (active relapsing-remitting) were evaluated annually with 7 tesla (T) brain MRI and 3T brain and spine MRI for 2 years, with clinical assessments for 3 years. Cortical lesions and paramagnetic rim lesions were identified on 7T images. Seven total cortical lesions formed in 3/30 individuals in the stable relapsing-remitting group (median 0, range 0-5), four total cortical lesions formed in 4/17 individuals in the progressive group (median 0, range 0-1), and 16 cortical lesions formed in 5/9 individuals in the active relapsing-remitting group (median 1, range 0-10, stable relapsing-remitting versus progressive versus active relapsing-remitting P = 0.006). New cortical lesions were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Individuals with at least three paramagnetic rim lesions had a greater increase in cortical lesion volume over time (median 16 µl, range -61 to 215 versus median 1 µl, range -24 to 184, P = 0.007), but change in lesion volume was not associated with disability change. Baseline cortical lesion volume was higher in people with worsening disability (median 1010 µl, range 13-9888 versus median 267 µl, range 0-3539, P = 0.001, adjusted for age and sex) and in individuals with relapsing-remitting multiple sclerosis who subsequently transitioned to secondary progressive multiple sclerosis (median 2183 µl, range 270-9888 versus median 321 µl, range 0-6392 in those who remained relapsing-remitting, P = 0.01, adjusted for age and sex). Baseline white matter lesion volume was not associated with worsening disability or transition from relapsing-remitting to secondary progressive multiple sclerosis. Cortical lesion formation is rare in people with stable white matter lesions, even in those with worsening disability. Cortical but not white matter lesion burden predicts disability worsening, suggesting that disability progression is related to long-term effects of cortical lesions that form early in the disease, rather than to ongoing cortical lesion formation.

5.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200253, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788180

RESUMO

BACKGROUND AND OBJECTIVES: The diagnosis of multiple sclerosis (MS) can be challenging in clinical practice because MS presentation can be atypical and mimicked by other diseases. We evaluated the diagnostic performance, alone or in combination, of the central vein sign (CVS), paramagnetic rim lesion (PRL), and cortical lesion (CL), as well as their association with clinical outcomes. METHODS: In this multicenter observational study, we first conducted a cross-sectional analysis of the CVS (proportion of CVS-positive lesions or simplified determination of CVS in 3/6 lesions-Select3*/Select6*), PRL, and CL in MS and non-MS cases on 3T-MRI brain images, including 3D T2-FLAIR, T2*-echo-planar imaging magnitude and phase, double inversion recovery, and magnetization prepared rapid gradient echo image sequences. Then, we longitudinally analyzed the progression independent of relapse and MRI activity (PIRA) in MS cases over the 2 years after study entry. Receiver operating characteristic curves were used to test diagnostic performance and regression models to predict diagnosis and clinical outcomes. RESULTS: The presence of ≥41% CVS-positive lesions/≥1 CL/≥1 PRL (optimal cutoffs) had 96%/90%/93% specificity, 97%/84%/60% sensitivity, and 0.99/0.90/0.77 area under the curve (AUC), respectively, to distinguish MS (n = 185) from non-MS (n = 100) cases. The Select3*/Select6* algorithms showed 93%/95% specificity, 97%/89% sensitivity, and 0.95/0.92 AUC. The combination of CVS, CL, and PRL improved the diagnostic performance, especially when Select3*/Select6* were used (93%/94% specificity, 98%/96% sensitivity, 0.99/0.98 AUC; p = 0.002/p < 0.001). In MS cases (n = 185), both CL and PRL were associated with higher MS disability and severity. Longitudinal analysis (n = 61) showed that MS cases with >4 PRL at baseline were more likely to experience PIRA at 2-year follow-up (odds ratio 17.0, 95% confidence interval: 2.1-138.5; p = 0.008), whereas no association was observed between other baseline MRI measures and PIRA, including the number of CL. DISCUSSION: The combination of CVS, CL, and PRL can improve MS differential diagnosis. CL and PRL also correlated with clinical measures of poor prognosis, with PRL being a predictor of disability accrual independent of clinical/MRI activity.


Assuntos
Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Feminino , Masculino , Adulto , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/diagnóstico , Pessoa de Meia-Idade , Estudos Transversais , Prognóstico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Veias Cerebrais/diagnóstico por imagem , Veias Cerebrais/patologia , Progressão da Doença , Estudos Longitudinais
6.
J Neurol ; 271(7): 4019-4027, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38564056

RESUMO

BACKGROUND: Cerebrospinal fluid (CSF) and spinal MRIs are often obtained in children with the radiologically isolated syndrome (RIS) for diagnosis and prognosis. Factors affecting the frequency and timing of these tests are unknown. OBJECTIVE: To determine whether age or sex were associated with (1) having CSF or spinal MRI obtained or (2) the timing of these tests. METHODS: We analyzed children (≤ 18 y) with RIS enrolled in an international longitudinal study. Index scans met 2010/2017 multiple sclerosis (MS) MRI criteria for dissemination in space (DIS). We used Fisher's exact test and multivariable logistic regression (covariates = age, sex, MRI date, MRI indication, 2005 MRI DIS criteria met, and race). RESULTS: We included 103 children with RIS (67% girls, median age = 14.9 y). Children ≥ 12 y were more likely than children < 12 y to have CSF obtained (58% vs. 21%, adjusted odds ratio [AOR] = 4.9, p = 0.03). Pre-2017, girls were more likely than boys to have CSF obtained (n = 70, 79% vs. 52%, AOR = 4.6, p = 0.01), but not more recently (n = 30, 75% vs. 80%, AOR = 0.2, p = 0.1; p = 0.004 for interaction). Spinal MRIs were obtained sooner in children ≥ 12 y (median 11d vs. 159d, p = 0.03). CONCLUSIONS: Younger children with RIS may be at continued risk for misdiagnosis and misclassification of MS risk. Consensus guidelines are needed.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Criança , Adolescente , Estudos Longitudinais , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Fatores Etários , Fatores Sexuais , Doenças Desmielinizantes/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/diagnóstico
7.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547430

RESUMO

BACKGROUND AND OBJECTIVES: People with multiple sclerosis (MS) have a dysregulated circulating metabolome, but the metabolome of MS brain lesions has not been studied. The aims of this study were to identify differences in the brain tissue metabolome in MS compared with controls and to assess its association with the cellular profile of corresponding tissue. METHODS: MS tissues included samples from the edge and core of chronic active or inactive lesions and periplaque white matter (WM). Control specimens were obtained from normal WM. Metabolomic analysis was performed using mass-spectrometry coupled with liquid/gas chromatography and subsequently integrated with single-nucleus RNA-sequencing data by correlating metabolite abundances with relative cell counts, as well as individual genes using Multiomics Factor Analysis (MOFA). RESULTS: Seventeen samples from 5 people with secondary progressive MS and 8 samples from 6 controls underwent metabolomic profiling identifying 783 metabolites. MS lesions had higher levels of sphingosines (false discovery rate-adjusted p-value[q] = 2.88E-05) and sphingomyelins and ceramides (q = 2.15E-07), but lower nucleotide (q = 0.05), energy (q = 0.001), lysophospholipid (q = 1.86E-07), and monoacylglycerol (q = 0.04) metabolite levels compared with control WM. Periplaque WM had elevated sphingomyelins and ceramides (q = 0.05) and decreased energy metabolites (q = 0.01) and lysophospholipids (q = 0.05) compared with control WM. Sphingolipids and membrane lipid metabolites were positively correlated with astrocyte and immune cell abundances and negatively correlated with oligodendrocytes. On the other hand, long-chain fatty acid, endocannabinoid, and monoacylglycerol pathways were negatively correlated with astrocyte and immune cell populations and positively correlated with oligodendrocytes. MOFA demonstrated associations between differentially expressed metabolites and genes involved in myelination and lipid biosynthesis. DISCUSSION: MS lesions and perilesional WM demonstrated a significantly altered metabolome compared with control WM. Many of the altered metabolites were associated with altered cellular composition and gene expression, indicating an important role of lipid metabolism in chronic neuroinflammation in MS.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esfingomielinas , Monoglicerídeos , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Ceramidas
8.
Mult Scler ; : 13524585241238094, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481081

RESUMO

This study aimed to determine whether choroid plexus volume (CPV) could differentiate multiple sclerosis (MS) from its mimics. A secondary analysis of two previously enrolled studies, 50 participants with MS and 64 with alternative diagnoses were included. CPV was automatically segmented from 3T magnetic resonance imaging (MRI), followed by manual review to remove misclassified tissue. Mean normalized choroid plexus volume (nCPV) to intracranial volume demonstrated relatively high specificity for MS participants in each cohort (0.80 and 0.76) with an area under the receiver-operator characteristic curve of 0.71 (95% confidence interval (CI) = 0.55-0.87) and 0.65 (95% CI = 0.52-0.77). In this preliminary study, nCPV differentiated MS from its mimics.

9.
Ann Neurol ; 95(3): 419-420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38421031
10.
Nature ; 627(8002): 165-173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326613

RESUMO

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Assuntos
Aracnoide-Máter , Encéfalo , Dura-Máter , Animais , Humanos , Camundongos , Aracnoide-Máter/anatomia & histologia , Aracnoide-Máter/irrigação sanguínea , Aracnoide-Máter/imunologia , Aracnoide-Máter/metabolismo , Transporte Biológico , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/metabolismo , Dura-Máter/anatomia & histologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Dura-Máter/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Perfilação da Expressão Gênica , Imageamento por Ressonância Magnética , Camundongos Transgênicos , Espaço Subaracnóideo/anatomia & histologia , Espaço Subaracnóideo/irrigação sanguínea , Espaço Subaracnóideo/imunologia , Espaço Subaracnóideo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Veias/metabolismo
11.
Cell Mol Life Sci ; 81(1): 31, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212566

RESUMO

The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.


Assuntos
Sistema Glinfático , Doenças do Sistema Nervoso , Humanos , Sistema Glinfático/patologia , Encéfalo/patologia , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/patologia , Inflamação/diagnóstico por imagem , Inflamação/patologia , Barreira Hematoencefálica/diagnóstico por imagem
12.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38277467

RESUMO

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Peptídeos , Proteômica
13.
Brain ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226694

RESUMO

Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis (MS) and have implications for non-relapsing biological progression. In recent years, the discovery of innovative magnetic resonance imaging (MRI) and PET derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with MS, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted (T1-w) and T2-w scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification, and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a Consensus Statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this Consensus Statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.

14.
Mult Scler ; 30(1): 25-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38088067

RESUMO

BACKGROUND: The central vein sign (CVS) is a proposed magnetic resonance imaging (MRI) biomarker for multiple sclerosis (MS); the optimal method for abbreviated CVS scoring is not yet established. OBJECTIVE: The aim of this study was to evaluate the performance of a simplified approach to CVS assessment in a multicenter study of patients being evaluated for suspected MS. METHODS: Adults referred for possible MS to 10 sites were recruited. A post-Gd 3D T2*-weighted MRI sequence (FLAIR*) was obtained in each subject. Trained raters at each site identified up to six CVS-positive lesions per FLAIR* scan. Diagnostic performance of CVS was evaluated for a diagnosis of MS which had been confirmed using the 2017 McDonald criteria at thresholds including three positive lesions (Select-3*) and six positive lesions (Select-6*). Inter-rater reliability assessments were performed. RESULTS: Overall, 78 participants were analyzed; 37 (47%) were diagnosed with MS, and 41 (53%) were not. The mean age of participants was 45 (range: 19-64) years, and most were female (n = 55, 71%). The area under the receiver operating characteristic curve (AUROC) for the simplified counting method was 0.83 (95% CI: 0.73-0.93). Select-3* and Select-6* had sensitivity of 81% and 65% and specificity of 68% and 98%, respectively. Inter-rater agreement was 78% for Select-3* and 83% for Select-6*. CONCLUSION: A simplified method for CVS assessment in patients referred for suspected MS demonstrated good diagnostic performance and inter-rater agreement.


Assuntos
Esclerose Múltipla , Adulto , Humanos , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Masculino , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Projetos Piloto , Reprodutibilidade dos Testes , Veias , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia
15.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950874

RESUMO

Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as a vital fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.


Assuntos
Substância Branca , Animais , Humanos , Substância Branca/diagnóstico por imagem , Encéfalo , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiologia , Tálamo/diagnóstico por imagem , Macaca mulatta , Mamíferos
16.
Invest Radiol ; 59(3): 243-251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493285

RESUMO

BACKGROUND: Leptomeningeal contrast enhancement (LME) on T2-weighted Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI is a reported marker of leptomeningeal inflammation, which is known to be associated with progression of multiple sclerosis (MS). However, this MRI approach, as typically implemented on clinical 3-tesla (T) systems, detects only a few enhancing foci in ~25% of patients and has thus been criticized as poorly sensitive. PURPOSE: To compare an optimized 3D real-reconstruction inversion recovery (Real-IR) MRI sequence on a clinical 3 T scanner to T2-FLAIR for prevalence, characteristics, and clinical/radiological correlations of LME. MATERIALS AND METHODS: We obtained 3D T2-FLAIR and Real-IR scans before and after administration of standard-dose gadobutrol in 177 scans of 154 participants (98 women, 64%; mean ± SD age: 49 ± 12 years), including 124 with an MS-spectrum diagnosis, 21 with other neurological and/or inflammatory disorders, and 9 without neurological history. We calculated contrast-to-noise ratios (CNR) in 20 representative LME foci and determined association of LME with cortical lesions identified at 7 T (n = 19), paramagnetic rim lesions (PRL) at 3 T (n = 105), and clinical/demographic data. RESULTS: We observed focal LME in 73% of participants on Real-IR (70% in established MS, 33% in healthy volunteers, P < 0.0001), compared to 33% on T2-FLAIR (34% vs. 11%, P = 0.0002). Real-IR showed 3.7-fold more LME foci than T2-FLAIR ( P = 0.001), including all T2-FLAIR foci. LME CNR was 2.5-fold higher by Real-IR ( P < 0.0001). The major determinant of LME status was age. Although LME was not associated with cortical lesions, the number of PRL was associated with the number of LME foci on both T2-FLAIR ( P = 0.003) and Real-IR ( P = 0.0003) after adjusting for age, sex, and white matter lesion volume. CONCLUSIONS: Real-IR a promising tool to detect, characterize, and understand the significance of LME in MS. The association between PRL and LME highlights a possible role of the leptomeninges in sustaining chronic inflammation.


Assuntos
Esclerose Múltipla , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética , Meninges/diagnóstico por imagem , Meninges/patologia , Inflamação/patologia
17.
Front Neuroimaging ; 2: 1252261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107773

RESUMO

Introduction: Automatic whole brain and lesion segmentation at 7T presents challenges, primarily from bias fields, susceptibility artifacts including distortions, and registration errors. Here, we sought to use deep learning algorithms (D/L) to do both skull stripping and whole brain segmentation on multiple imaging contrasts generated in a single Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) acquisition on participants clinically diagnosed with multiple sclerosis (MS), bypassing registration errors. Methods: Brain scans Segmentation from 3T and 7T scanners were analyzed with software packages such as FreeSurfer, Classification using Derivative-based Features (C-DEF), nnU-net, and a novel 3T-to-7T transfer learning method, Pseudo-Label Assisted nnU-Net (PLAn). 3T and 7T MRIs acquired within 9 months from 25 study participants with MS (Cohort 1) were used for training and optimizing. Eight MS patients (Cohort 2) scanned only at 7T, but with expert annotated lesion segmentation, was used to further validate the algorithm on a completely unseen dataset. Segmentation results were rated visually by experts in a blinded fashion and quantitatively using Dice Similarity Coefficient (DSC). Results: Of the methods explored here, nnU-Net and PLAn produced the best tissue segmentation at 7T for all tissue classes. In both quantitative and qualitative analysis, PLAn significantly outperformed nnU-Net (and other methods) in lesion detection in both cohorts. PLAn's lesion DSC improved by 16% compared to nnU-Net. Discussion: Limited availability of labeled data makes transfer learning an attractive option, and pre-training a nnUNet model using readily obtained 3T pseudo-labels was shown to boost lesion detection capabilities at 7T.

18.
Nat Commun ; 14(1): 7060, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923732

RESUMO

Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF) likely due to lipofuscin (lipo-AF) and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipo-AF signal accumulates first within microglia and it occurs earliest in white versus gray matter. Importantly, in gray matter, lipo-AF signal can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. We further show that there is an age-dependent accumulation of lipo-AF inside and outside of microglia, which is not affected by amyloid plaques. We finally implement a robust and cost-effective strategy to quench AF in mouse, marmoset, and human brain tissue.


Assuntos
Lipofuscina , Microglia , Camundongos , Humanos , Animais , Microglia/metabolismo , Lipofuscina/metabolismo , Sistema Nervoso Central/metabolismo , Macrófagos/metabolismo , Microscopia Confocal
19.
medRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886541

RESUMO

Background and objectives: Cortical lesions (CL) are common in multiple sclerosis (MS) and associate with disability and progressive disease. We asked whether CL continue to form in people with stable white matter lesions (WML) and whether the association of CL with worsening disability relates to pre-existing or new CL. Methods: A cohort of adults with MS were evaluated annually with 7 tesla (T) brain magnetic resonance imaging (MRI) and 3T brain and spine MRI for 2 years, and clinical assessments for 3 years. CL were identified on 7T images at each timepoint. WML and brain tissue segmentation were performed using 3T images at baseline and year 2. Results: 59 adults with MS had ≥1 7T follow-up visit (mean follow-up time 2±0.5 years). 9 had "active" relapsing-remitting MS (RRMS), defined as new WML in the year prior to enrollment. Of the remaining 50, 33 had "stable" RRMS, 14 secondary progressive MS (SPMS), and 3 primary progressive MS. 16 total new CL formed in the active RRMS group (median 1, range 0-10), 7 in the stable RRMS group (median 0, range 0-5), and 4 in the progressive MS group (median 0, range 0-1) (p=0.006, stable RR vs PMS p=0.88). New CL were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Baseline CL volume was higher in people with worsening disability (median 1010µl, range 13-9888 vs median 267µl, range 0-3539, p=0.001, adjusted for age and sex) and in individuals with RRMS who subsequently transitioned to SPMS (median 2183µl, range 270-9888 vs median 321µl, range 0-6392 in those who remained RRMS, p=0.01, adjusted for age and sex). Baseline WML volume was not associated with worsening disability or transition from RRMS to SPMS. Discussion: CL formation is rare in people with stable WML, even in those with worsening disability. CL but not WML burden predicts future worsening of disability, suggesting that the relationship between CL and disability progression is related to long-term effects of lesions that form in the earlier stages of disease, rather than to ongoing lesion formation.

20.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808784

RESUMO

Single-time-point histopathological studies on postmortem multiple sclerosis (MS) tissue fail to capture lesion evolution dynamics, posing challenges for therapy development targeting development and repair of focal inflammatory demyelination. To close this gap, we studied experimental autoimmune encephalitis (EAE) in the common marmoset, the most faithful animal model of these processes. Using MRI-informed RNA profiling, we analyzed ~600,000 single-nucleus and ~55,000 spatial transcriptomes, comparing them against EAE inoculation status, longitudinal radiological signals, and histopathological features. We categorized 5 groups of microenvironments pertinent to neural function, immune and glial responses, tissue destruction and repair, and regulatory network at brain borders. Exploring perilesional microenvironment diversity, we uncovered central roles of EAE-associated astrocytes, oligodendrocyte precursor cells, and ependyma in lesion formation and resolution. We pinpointed imaging and molecular features capturing the pathological trajectory of WM, offering potential for assessing treatment outcomes using marmoset as a platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA