Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Phys Chem Lett ; 15(14): 3705-3712, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38546242

RESUMO

Bound and unbound Frenkel-exciton pairs are essential transient precursors for a variety of photophysical and biochemical processes. In this work, we identify bound and unbound Frenkel-exciton complexes in an electron push-pull polymer semiconductor using coherent two-dimensional spectroscopy. We find that the dominant A0-1 peak of the absorption vibronic progression is accompanied by a subpeak, each dressed by distinct vibrational modes. By considering the Liouville pathways within a two-exciton model, the imbalanced cross-peaks in one-quantum rephasing and nonrephasing spectra can be accounted for by the presence of pure biexcitons. The two-quantum nonrephasing spectra provide direct evidence for unbound exciton pairs and biexcitons with dominantly attractive force. In addition, the spectral features of unbound exciton pairs show mixed absorptive and dispersive character, implying many-body interactions within the correlated Frenkel-exciton pairs. Our work offers novel perspectives on the Frenkel-exciton complexes in semiconductor polymers.

2.
J Phys Chem Lett ; 15(1): 272-280, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38166236

RESUMO

Exciton-exciton annihilation is a ubiquitous nonlinear dynamic phenomenon in materials hosting Frenkel excitons. In this work, we investigate the nonlinear exciton dynamics of an electron push-pull conjugated polymer by fluence-dependent transient absorption and excitation-correlation photoluminescence spectroscopy, where we can quantitatively show the latter to be a more selective probe of the nonlinear dynamics. Simulations based on a time-independent exciton annihilation model show a decreasing trend for the extracted annihilation rates with excitation fluence. Further investigation of the fluence-dependent transients suggests that the exciton-exciton annihilation bimolecular rates are not constant in time, displaying a t-1/2 time dependence, which we rationalize as reflective of one-dimensional exciton diffusion, with a diffusion length estimated to be 9 ± 2 nm. In addition, exciton annihilation gives rise to a long-lived species that recombines on a nanosecond time scale. Our conclusions shed broad light onto nonlinear exciton dynamics in push-pull conjugated polymers.

3.
Chem Commun (Camb) ; 60(15): 1979-1998, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190114

RESUMO

Propelled by the widespread adoption of portable electronic devices, electrochemical energy storage systems, particularly lithium-ion batteries (LIBs), have become ubiquitous in modern society. The electrode is the critical battery component, where intricate interactions between the materials govern both the energy output and the overall lifespan of the battery under operational conditions. However, the poor interfacial properties of traditional electrode materials fall short in meeting escalating performance demands. To facilitate the advent of next-generation lithium-ion batteries, attention must be devoted to the interfacial chemistry that dictates and modulates the various dynamic and transport processes across multiple length scales within the composite electrodes. Recent research has concentrated on systematically understanding the properties of distinct electrode components to engineer meticulously tailored electrode formulations. These are geared towards composite electrodes with heightened chemical stability, thermal robustness, enhanced local conductivities, and superior mechanical resilience. This review elucidates the latest advances in understanding the impact of interfacial interactions in achieving high-capacity, high-stability electrodes. Through comprehensive insights into the interfacial interactions between the various electrode components, we can create improved integrated systems that outperform those developed through empirical methods. In light of this, the adoption of a holistic approach to enhance the interactions among electrode materials becomes of paramount importance. This concerted effort ensures the attainment of heightened rate capability, facilitation of lithium-ion transport, and overall system stability throughout the entirety of the cyclic process.

4.
Chem Mater ; 35(23): 10258-10267, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107193

RESUMO

Linear and nonlinear optical line shapes reveal details of excitonic structure in polymer semiconductors. We implement absorption, photoluminescence, and transient absorption spectroscopies in DPP-DTT, an electron push-pull copolymer, to explore the relationship between their spectral line shapes and chain conformation, deduced from resonance Raman spectroscopy and from ab initio calculations. The viscosity of precursor polymer solutions before film casting displays a transition that suggests gel formation above a critical concentration. Upon crossing this viscosity deflection concentration, the line shape analysis of the absorption spectra within a photophysical aggregate model reveals a gradual increase in interchain excitonic coupling. We also observe a red-shifted and line-narrowed steady-state photoluminescence spectrum along with increasing resonance Raman intensity in the stretching and torsional modes of the dithienothiophene unit, which suggests a longer exciton coherence length along the polymer-chain backbone. Furthermore, we observe a change of line shape in the photoinduced absorption component of the transient absorption spectrum. The derivative-like line shape may originate from two possibilities: a new excited-state absorption or Stark effect, both of which are consistent with the emergence of a high-energy shoulder as seen in both photoluminescence and absorption spectra. Therefore, we conclude that the exciton is more dispersed along the polymer chain backbone with increasing concentrations, leading to the hypothesis that polymer chain order is enhanced when the push-pull polymers are processed at higher concentrations. Thus, tuning the microscopic chain conformation by concentration would be another factor of interest when considering the polymer assembly pathways for pursuing large-area and high-performance organic optoelectronic devices.

5.
Chem Mater ; 35(21): 8816-8826, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027538

RESUMO

Polymer-based semiconductors and organic electronics encapsulate a significant research thrust for informatics-driven materials development. However, device measurements are described by a complex array of design and parameter choices, many of which are sparsely reported. For example, the mobility of a polymer-based organic field-effect transistor (OFET) may vary by several orders of magnitude for a given polymer as a plethora of parameters related to solution processing, interface design/surface treatment, thin-film deposition, postprocessing, and measurement settings have a profound effect on the value of the final measurement. Incomplete contextual, experimental details hamper the availability of reusable data applicable for data-driven optimization, modeling (e.g., machine learning), and analysis of new organic devices. To curate organic device databases that contain reproducible and findable, accessible, interoperable, and reusable (FAIR) experimental data records, data ontologies that fully describe sample provenance and process history are required. However, standards for generating such process ontologies are not widely adopted for experimental materials domains. In this work, we design and implement an object-relational database for storing experimental records of OFETs. A data structure is generated by drawing on an international standard for batch process control (ISA-88) to facilitate the design. We then mobilize these representative data records, curated from the literature and laboratory experiments, to enable data-driven learning of process-structure-property relationships. The work presented herein opens the door for the broader adoption of data management practices and design standards for both the organic electronics and the wider materials community.

6.
Chem Mater ; 35(21): 9299-9312, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027548

RESUMO

Contemporary design principles for organic mixed ionic electronic conductors (OMIECs) are mostly based on the ethylene glycol moiety, which may not be representative of the OMIEC class as a whole. Furthermore, glycolated polymers can be difficult to synthesize and process effectively. As an emerging alternative, we present a series of polythiophenes functionalized with a hybrid carboxyl-alkyl side chain. By variation of the alkyl spacer length, a comprehensive evaluation of both the impact of carboxylic acid functionalization and alkyl spacer length was conducted. COOH-functionalization endows the polymer with preferential intrinsic low-swelling behavior and water processability to yield solvent-resistant conjugated polyelectrolytes while retaining substantial electroactivity in aqueous environments. Advanced in situ techniques, including time-resolved spectroelectrochemistry and Raman spectroscopy, are used to interrogate the materials' microstructure, ionic-electronic coupling, and operational stability in devices. To compare these materials' performance to state-of-the-art technology for the design of OMIECs, we benchmarked the materials and demonstrated significant application potential in both planar and interdigitated organic electrochemical transistors (OECTs). The polythiophene bearing carboxyl-butyl side chains exhibits greater electrochemical performance and faster doping kinetics within the polymer series, with a record-high OECT performance among conjugated polyelectrolytes ([µC*]pOECT = 107 ± 4 F cm-1 V-1 s-1). The results provide an enhanced understanding of structure-property relationships for conjugated polyelectrolytes operating in aqueous media and expand the materials options for future OMIEC development. Further, this work demonstrates the potential for conjugated polymers bearing alkyl-COOH side chains as a path toward robust OMIEC designs that may facilitate further facile (bio)chemical functionalization for a range of (bio)sensing applications.

7.
Chem Rev ; 123(18): 10835-10837, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702488
8.
ACS Macro Lett ; 11(1): 96-102, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574788

RESUMO

Anisotropic stimuli-responsive microgels based upon the cholesteric phase of chitin nanocrystals and N-isopropylacrylamide were designed and synthesized. The cholesteric structure was interrogated, and the texture was shown to directly influence the microgel shape and anisotropy. Changes in the microgel volume led to changes in the texture, where microgels comprising up to six bands exhibited a twisted bipolar texture, while those with greater volumes displayed a concentric-packing structure. As designed, the imprinted cholesteric phase induced an asymmetric response to temperature, leading to a change in shape and optical properties. Furthermore, the cholesteric structure is able to deform, facilitating transport into a small channel. Access to synthetic structures having a self-assembled twisted texture derived from cholesterics embedded within a polymer matrix will provide guidelines for designing biopolymer composites with programmable motion.


Assuntos
Microgéis , Nanopartículas , Anisotropia , Quitina , Polímeros/química
9.
ACS Appl Mater Interfaces ; 14(3): 3613-3620, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35037454

RESUMO

The advent of data analytics techniques and materials informatics provides opportunities to accelerate the discovery and development of organic semiconductors for electronic devices. However, the development of engineering solutions is limited by the ability to control thin-film morphology in an immense parameter space. The combination of high-throughput experimentation (HTE) laboratory techniques and data analytics offers tremendous avenues to traverse the expansive domains of tunable variables offered by organic semiconductor thin films. This Perspective outlines the steps required to incorporate a comprehensive informatics methodology into the experimental development of polymer-based organic semiconductor technologies. The translation of solution processing and property metrics to thin-film behavior is crucial to inform efficient HTE for data collection and application of data-centric tools to construct new process-structure-property relationships. We argue that detailed investigation of the solution state prior to deposition in conjunction with thin-film characterization will yield a deeper understanding of the physicochemical mechanisms influencing performance in π-conjugated polymer electronics, with data-driven approaches offering predictive capabilities previously unattainable via traditional experimental means.

10.
Natl Sci Rev ; 8(9): nwaa209, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34691723

RESUMO

Hydrogel optical light-guides have received substantial interest for applications such as deep-tissue biosensors, optogenetic stimulation and photomedicine due to their biocompatibility, (micro)structure control and tissue-like Young's modulus. However, despite recent developments, large-scale fabrication with a continuous synthetic methodology, which could produce core-sheath hydrogel fibers with the desired optical and mechanical properties suitable for deep-tissue applications, has yet to be achieved. In this study, we report a versatile concept of integrated light-triggered dynamic wet spinning capable of continuously producing core-sheath hydrogel optical fibers with tunable fiber diameters, and mechanical and optical propagation properties. Furthermore, this concept also exhibited versatility for various kinds of core-sheath functional fibers. The wet spinning synthetic procedure and fabrication process were optimized with the rational design of the core/sheath material interface compatibility [core = poly(ethylene glycol diacrylate-co-acrylamide); sheath = Ca-alginate], optical transparency, refractive index and spinning solution viscosity. The resulting hydrogel optical fibers exhibited desirable low optical attenuation (0.18 ± 0.01 dB cm-1 with 650 nm laser light), excellent biocompatibility and tissue-like Young's modulus (<2.60 MPa). The optical waveguide hydrogel fibers were successfully employed for deep-tissue cancer therapy and brain optogenetic stimulation, confirming that they could serve as an efficient versatile tool for diverse deep-tissue therapy and brain optogenetic applications.

11.
ACS Omega ; 5(50): 32295-32304, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376866

RESUMO

Perovskite solar cells have emerged as a promising next-generation electrical power generating tool. However, imperfections in perovskite films are one of the crucial factors preventing the commercialization of perovskite solar cells. Passivation has proven to be an effective strategy to reduce the density of defect states in perovskite crystals and inhibit ion migration. Although significant work on chloride ion and N,N-dimethylformamide (DMF) has shown that the additives are able to passivate different types of trap defects, systematic studies on the effects of DMF and HCl on perovskite crystallization when used in conjunction with each other are elusive. Here, we systematically investigated the synergistic effect of DMF and hydrochloric acid (HCl) on methylammonium (MA+)-based perovskite films with the two-step spin-coating method. As a Lewis base, DMF coordinates well with Pb2+ to facilitate a decrease in the number of defects, thereby improving the carrier separation and transport, while HCl improves the overall perovskite film morphology. Addition of 20 µL HCl/20 µL DMF to 10 mL of methylammonium iodide/isopropyl alcohol solution afforded ca. 500 nm thick perovskite films with no observable defects within the grains. The process allowed fabrication of devices with an active area of 0.16 cm2, which produced power conversion efficiencies up to 18.37% with minimal hysteresis.

12.
ACS Appl Mater Interfaces ; 12(24): 27786-27793, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32462859

RESUMO

Regular microstructures can improve the electrical and optical characteristics of perovskite single crystals because of the removal of defects and grain boundaries. Microstructured single crystals are commonly fabricated by either rigid or flexible templates. However, rigid templates usually need surface treatment before crystal fabrication to create an antiadhesion layer, while flexible templates encounter difficulties in achieving a large area of uniform single crystals without any deformation. In this work, we present a facile and robust method to fabricate perovskite single crystals using rigid silicon pillars coated with flexible polymer solutions, in which surface treatment is avoided in the preparation process, and deformation is absent in the formed crystals. The method realized the fabrication of colorful concentric-ring patterns composed of nanoscale single crystals for the first time. In order to concisely control the preparation of the template, the Newton's ring phenomenon was used to value the droplet height because the number of rings changed with the optical path difference. A related digital simulation was performed to find the correlation of the Newton's ring pattern with the shape of the droplets. The simulated results were consistent with the experimental observations generally, indicating that the pattern could be controlled mechanically. Concomitantly, the resulting perovskite nanoscale single crystals formed a regular colorful concentric-ring pattern. By changing the design of the rigid templates, the parameters of the fabrication process, or the selection of the coating polymer solution, different ring-patterned single crystals were successfully prepared without surface treatment and deformation. The crystals have potential applications in lasers or photodetectors.

13.
ACS Appl Mater Interfaces ; 11(47): 44046-44057, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31714051

RESUMO

While the focus of research related to the design of robust, high-performance Li-ion batteries relates primarily to the synthesis of active particles, the binder plays a crucial role in stability and ensures electrode integrity during volume changes that occur with cycling. Conventional polymeric binders such as poly(vinylidene difluoride) generally do not interact with active particle surfaces and fail to accommodate large changes in particle spacing during cycling. Thus, attention is now turning toward the exploration of interfacial interactions between composite electrode constituents as a key element in ensuring electrode stability. Recently, a poly[3-(potassium-4-butanoate)thiophene] (PPBT) binder component, coupled with a polyethylene glycol (PEG) surface coating for the active material was demonstrated to enhance both electron and ion transport in magnetite-based anodes, and it was established that the PEG/PPBT approach aids in overall battery electrode performance. Herein, the PEG/PPBT system is used as a model polymeric binder for understanding cation effects in anode systems. As such, the potassium ion was replaced with sodium, lithium, hydrogen, and ammonium through ion exchange. The potassium salt exhibited the most stable electrochemical performance, which is attributed to the cation size and resultant electrode morphology that facilitates ion transport. The lithium analogue demonstrated an initial increase in capacity but was unable to maintain this performance over 100 cycles; while the sodium-based system exhibited initially lower capacity as a result of slow reaction kinetics, which increased as cycling progressed. The parent carboxylic acid polymer and its ammonium salt were notably inferior. The results exploring the effect of ion exchange creates a framework for understanding how cations associated directly with the polymer impact electrochemical performance and aid in the overall design of binders for composite Li-ion battery anodes.

14.
ACS Appl Mater Interfaces ; 11(43): 40034-40042, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31580639

RESUMO

Rational design and construction of effective silicon (Si) electrode structures to relieve large volumetric changes that occur during the charge/discharge process remain significant challenges for the development of robust lithium-ion batteries (LIBs). Herein, we propose an electrically conductive poly[3-(potassium-4-butanoate)thiophene] (PPBT) capping layer on the Si surface (Si@PPBT) to serve as the active material and be used in conjunction with a common polymer binder as an approach to tackle issues emanating from volumetric changes. The PPBT protective shell layer provides the system with tolerance toward variations in active material volume during cycling, improves the dispersion of Si nanoparticles in the binder, enhances the electrolyte uptake rate, and provides a strong adhesion force between the Si/carbon additives/current collector, thereby helping to maintain electrode integrity during the charge/discharge process. The π-conjugated polythiophene backbone structure also allows the Si core to maintain electrical contact with carbon additives and/or polymer binder, enabling the formation of effective electrical transport bridges and stabilizing solid electrolyte interphase layer growth. The integrated Si@PPBT/carboxymethyl cellulose (CMC) anode exhibited high initial Coulombic efficiency (84.9%), enhanced rate capability performance, and long cycling stability with a reversible capacity of 1793 mA h g-1 after 200 cycles, 3.4 times higher than that of pristine Si anodes with the same CMC binder (528 mA h g-1). The results suggest that the Si@PPBT design presents a promising approach to promote the practical use of Si anodes in LIBs, which could be extended to other anode materials exhibiting large volume changes during lithiation/delithiation.

15.
ACS Appl Mater Interfaces ; 11(41): 37955-37965, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31522502

RESUMO

The development of processing methods to precisely control the solution state properties of semiconducting polymers in situ have remained elusive. Herein, a facile solution seed nucleation processing method is presented in which nucleated poly(3-hexylthiophene) (P3HT) solutions are blended with well-solvated, non-nucleated counterparts as a means to promote the formation of interconnected polymer networks. Nucleation and growth of these networks was induced by preprocessing the solution with UV irradiation and subsequent solution aging prior to deposition via blade-coating. This process was adopted for both batch and continuous flow processing. Superior charge carrier (hole) mobilities were observed in samples with nucleated seeds compared to controls with 0% nucleated P3HT and 100% nucleated P3HT. UV-vis spectral analysis identified that an intermediate degree of solution aggregation (15-20%) is most conducive to enhanced charge transport. The role of intrachain and interchain ordering and alignment on the mesoscale and macroscale is characterized via X-ray scattering, atomic force microscopy, and optical microscopy techniques. The results presented here provide a framework to enable in situ control of the nucleation and growth process to achieve targeted solution state properties resulting in reliable and reproducible performance when the solutions are used for device fabrication.

16.
ACS Appl Mater Interfaces ; 11(28): 25338-25350, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31265224

RESUMO

Inducing the self-assembly of π-conjugated polymers into semicrystalline aggregates has been a topic of substantial interest in the field of organic electronics and is typically achieved using energy-intensive solution processing or postfilm deposition methods. Here, we demonstrate the ability of bioderived cellulose nanocrystals (CNCs) to act as structure-directing agents for the conjugated semiconducting polymer, poly(3-hexylthiophene) (P3HT). CNCs were grafted with polystyrene, P3HT or poly(N-isopropylacrylamide), and subsequently blended with P3HT in solution to study the effect on conjugated polymer self-assembly. The presence of polymer-grafted CNCs resulted in an increase in P3HT semicrystalline aggregate formation, the degree of which depended on the surface free energy of the grafted polymer. The time-dependent P3HT aggregation was characterized by UV-vis spectroscopy, and the resulting data was fit to the Avrami crystallization model. The surface energies of each additive were calculated via contact angle measurements and were used to elucidate the mechanism of P3HT aggregation in these blended systems. P3HT aggregation was enhanced by unfavorable polymer-polymer interactions at the CNC surface, and spatial confinement effects that were imposed by phase separation. Finally, films were cast from the P3HT/CNC solutions and their electronic performance was characterized by organic field-effect transistor device measurements. Films containing polymer-grafted CNCs exhibited higher charge-carrier mobilities, in some cases, up to a 6-fold increase. These bioderived particles constituted a significant volume fraction of the deposited P3HT thin films with an increase in performance, showing promise as a method for reducing costs and improving the sustainability of organic electronics.

17.
Langmuir ; 34(51): 15804-15811, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30452276

RESUMO

The stick-slip motion of the triple phase contact line (TCL) has wide applications in inkjet printing, surface coatings, functional material assembly, and device fabrication. Here, for the first time, we report that on an alumina substrate with nanostructures, the stick-slip motion of the advancing TCL during spreading of an emulsion droplet can serve as an effective nanopatterning process. Air enclosed in the substrate nanostructures can be exchanged with liquid during the "stick" phase, resulting in the formation of bubbles arranged in a ring pattern. The process takes place in two stages: rings of air form first and then, as the volume of air increases, they separate into air bubbles as a result of the Plateau Rayleigh instability. During the first stage, the rings form due to the stick-slip of the advancing TCL and are ascribed to hydrogen-bonding interactions. Ultimate bubble size is dependent on the substrate pore dimensions. The process was simulated using finite-element analysis to elucidate the mechanism associated with subsequent bubble formation. The simulations corroborate well with the experimental results. This stick-slip motion of the advancing TCL provides new insights into the phenomena associated with droplet spreading and wetting, and the ability to control the formation of patterned bubbles will be promising in applications ranging from microfluidics to printing of functional materials and devices based on bubble templates and applications requiring submerged hydrophobic surface.

18.
ACS Appl Mater Interfaces ; 10(42): 36464-36474, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30273486

RESUMO

Understanding the role of the distribution of polymer chain lengths on process-structure-property relationships in semiconducting organic electronics has remained elusive due to challenges in synthesizing targeted molecular weights ( Mw) and polydispersity indices. Here, a facile blending approach of various poly(3-hexylthiophene) (P3HT) molecular weights is used to investigate the impact of the distribution of polymer chain lengths on self-assembly into aggregates and associated charge transport properties. Low and high Mw samples were blended to form a highly polydisperse sample which was compared to a similar, medium Mw control. Self-assembly was induced by preprocessing the polymer solution with UV irradiation and subsequent solution aging before deposition via blade-coating. Superior charge carrier (hole) mobilities were observed for the blend and control samples. Furthermore, their solution lifetimes exceeded 14 days. UV-vis spectral analysis suggests that low Mw P3HT lacks the mesoscale crystallinity required for percolative charge transport. In contrast, when the Mw is too high, the polymer rapidly aggregates, leading to paracrystalline disorder and structural inhomogeneity that interrupts charge-transfer pathways. The role of grain boundaries, fibrillar order, and macroscale alignment is characterized via grazing-incidence wide-angle X-ray scattering, atomic force microscopic, and optical microscopic techniques. The results presented here provide additional guidance on the interplay between polymer solubility, self-assembly, network interconnectivity, and charge transport to enable robust polymer ink formulations with reliable and reproducible performance attributes.

19.
Small ; 14(46): e1802060, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30198146

RESUMO

A thermally "switchable" liquid-crystalline (LC) phase is observed in aqueous suspensions of cellulose nanocrystals (CNCs) featuring patchy grafts of the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM). "Patchy" polymer decoration of the CNCs is achieved by preferential attachment of an atom transfer radical polymerization (ATRP) initiator to the ends of the rods and subsequent surface-initiated ATRP. The patchy PNIPAM-grafted CNCs display a higher colloidal stability above the lower critical solution temperature (LCST) of PNIPAM than CNCs decorated with PNIPAM in a brush-like manner. A 10 wt% suspension of the "patchy" PNIPAM-modified CNCs displays birefringence at room temperature, indicating the presence of an LC phase. When heated above the LCST of PNIPAM, the birefringence disappears, indicating the transition to an isotropic phase. This switching is reversible and appears to be driven by the collapse of the PNIPAM chains above the LCST, causing a reduction of the rods' packing density and an increase in translational and rotational freedom. Suspensions of the "brush" PNIPAM-modified CNCs display a different behavior. Heating above the LCST causes phase separation, likely because the chain collapse renders the particles more hydrophobic. The thermal switching observed for the "patchy" PNIPAM-modified CNCs is unprecedented and possibly useful for sensing and smart packaging applications.

20.
ACS Appl Mater Interfaces ; 10(41): 35385-35394, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30152674

RESUMO

One major drawback that prevents the large-scale practical implementation of perovskites is their susceptibility to performance degradation in humid environments. Here, we achieved uniform, stable perovskite films within a polyvinylpyrrolidone (PVP) polymer frame via mild solution processing in ambient air with over 60% relative humidity. In addition to facilitating film formation, the hydrophobic PVP served to protect the perovskite grains from atmospheric moisture. Use of PVP, coupled with optimization of the deposition parameters, provided for compact, smooth, pinhole-free perovskite films that when incorporated into a photovoltaic device exhibited highly reproducible efficiencies in the range of up to 17%. In the absence of encapsulation, the devices exhibited stable performance characteristics during exposure to humid ambient air for 600 h. Furthermore, on flexible substrates, the 8 wt % PVP-perovskite samples provided for device efficiencies of ca. 15%. The devices retained ca. 73% of their efficiency after bending 1000 times with a bending radius of 0.5 cm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA