Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioscience ; 72(3): 233-246, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35241971

RESUMO

Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.

2.
Ecology ; 96(8): 2064-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26405732

RESUMO

Foundation species can change plant community structure by modulating important ecological processes such as community assembly, yet this topic is poorly understood. In alpine systems, cushion plants commonly act as foundation species by ameliorating local conditions. Here, we analyze diversity patterns of species' assembly within cushions and in adjacent surrounding open substrates (83 sites across five continents) calculating floristic dissimilarity between replicate plots, and using linear models to analyze relationships between microhabitats and species diversity. Floristic dissimilarity did not change across biogeographic regions, but was consistently lower in the cushions than in the open microhabitat. Cushion plants appear to enable recruitment of many relatively stress-intolerant species that otherwise would not establish in these communities, yet the niche space constructed by cushion plants supports a more homogeneous composition of species than the niche space beyond the cushion's influence. As a result, cushion plants support higher α-diversity and a larger species pool, but harbor assemblies with lower ß-diversity than open microhabitats. We conclude that habitats with and without dominant foundation species can strongly differ in the processes that drive species recruitment, and thus the relationship between local and regional species diversity.


Assuntos
Biodiversidade , Plantas/classificação , Solo/química , Modelos Biológicos , Água
3.
F1000Res ; 3: 130, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25075305

RESUMO

The reproductive assurance hypothesis states that self-incompatible female plants must produce twice the number of seeds relative to their self-compatible hermaphroditic counterparts to persist in gynodioecious populations. This is a viable life-history strategy, provided that pollination rates are sufficiently high. However, reduced pollination rates in alpine plants are likely due to climate induced plant-pollinator mismatches and general declines in pollinators. Using a gynodioecious population of the dominant plant Silene acaulis (Caryophyllaceae), we tested the reproductive assurance hypothesis and also the stress gradient hypothesis with a series of pollinator exclusion trials and extensive measurements of subsequent reproductive output (gender ratio, plant size, percent fruit-set, fruit weight, seeds per fruit, total seeds, seed weight, and seed germination). The reproductive assurance hypothesis was supported with female plants being more sensitive to and less likely to be viable under reductions in pollination rates. These findings are the first to show that the stress gradient hypothesis is also supported under a gradient of pollen supply instead of environmental limitations. Beneficiary abundance was negatively correlated to percent fruit-set under current pollen supply, but became positive under reduced pollen supply suggesting that there are important plant-plant-pollinator interactions related to reproduction in these alpine plant species.

4.
New Phytol ; 204(2): 386-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24985245

RESUMO

Facilitative effects of some species on others are a major driver of biodiversity. These positive effects of a benefactor on its beneficiary can result in negative feedback effects of the beneficiary on the benefactor and reduced fitness of the benefactor. However, in contrast to the wealth of studies on facilitative effects in different environments, we know little about whether the feedback effects show predictable patterns of context dependence. We reanalyzed a global data set on alpine cushion plants, previously used to assess their positive effects on biodiversity and the nature of the beneficiary feedback effects, to specifically assess the context dependence of how small- and large-scale drivers alter the feedback effects of cushion-associated (beneficiary) species on their cushion benefactors using structural equation modelling. The effect of beneficiaries on cushions became negative when beneficiary diversity increased and facilitation was more intense. Local-scale biotic and climatic conditions mediated these community-scale processes, having indirect effects on the feedback effect. High-productivity sites demonstrated weaker negative feedback effects of beneficiaries on the benefactor. Our results indicate a limited impact of the beneficiary feedback effects on benefactor cushions, but strong context dependence. This context dependence may help to explain the ecological and evolutionary persistence of this widespread facilitative system.


Assuntos
Biodiversidade , Ecossistema , Retroalimentação Fisiológica , Plantas , Meio Ambiente , Modelos Teóricos
5.
New Phytol ; 202(1): 95-105, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24329871

RESUMO

Facilitative interactions are defined as positive effects of one species on another, but bidirectional feedbacks may be positive, neutral, or negative. Understanding the bidirectional nature of these interactions is a fundamental prerequisite for the assessment of the potential evolutionary consequences of facilitation. In a global study combining observational and experimental approaches, we quantified the impact of the cover and richness of species associated with alpine cushion plants on reproductive traits of the benefactor cushions. We found a decline in cushion seed production with increasing cover of cushion-associated species, indicating that being a benefactor came at an overall cost. The effect of cushion-associated species was negative for flower density and seed set of cushions, but not for fruit set and seed quality. Richness of cushion-associated species had positive effects on seed density and modulated the effects of their abundance on flower density and fruit set, indicating that the costs and benefits of harboring associated species depend on the composition of the plant assemblage. Our study demonstrates 'parasitic' interactions among plants over a wide range of species and environments in alpine systems, and we consider their implications for the possible selective effects of interactions between benefactor and beneficiary species.


Assuntos
Ecossistema , Aptidão Genética , Fenômenos Fisiológicos Vegetais , Biodiversidade , Flores/fisiologia , Frutas/fisiologia , Modelos Lineares , Sementes/fisiologia , Especificidade da Espécie
6.
Ecol Lett ; 17(2): 193-202, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24238015

RESUMO

Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.


Assuntos
Biodiversidade , Clima , Modelos Biológicos , Plantas , Aclimatação , Altitude , Ásia , Europa (Continente) , Modelos Lineares , Nova Zelândia , América do Norte , América do Sul
7.
PLoS One ; 7(5): e37223, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655035

RESUMO

Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms--predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson's diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants.


Assuntos
Artrópodes/fisiologia , Ecossistema , Microclima , Silene/fisiologia , Animais , Canadá
8.
Transgenic Res ; 19(2): 269-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19690976

RESUMO

Nicotiana tabacum (tobacco) was transformed with three genes involved in sucrose metabolism, UDP-glucose pyrophosphorylase (UGPase, EC 2.7.7.9), sucrose synthase (SuSy, EC 2.4.1.13) and sucrose phosphate synthase (SPS, EC 2.4.1.14). Plants harbouring the single transgenes were subsequently crossed to produce double and triple transgenic lines, including: 2 x 35S::UGPase x SPS, 4CL::UGPase x SPS, 2 x 35S::SuSy x SPS, 4CL::SuSy x SPS, 2 x 35S::UGPase x SuSy x SPS, and 4CL::UGPase x SuSy x SPS. The ultimate aim of the study was to examine whether it is possible to alter cellulose production through the manipulation of sucrose metabolism genes. While altering sucrose metabolism using UGPase, SuSy and SPS does not have an end effect on cellulose production, their simultaneous overexpression resulted in enhanced primary growth as seen in an increase in height growth, in some cases over 50%. Furthermore, the pyramiding strategy of simultaneously altering the expression of multiple genes in combination resulted in increased time to reproductive bud formation as well as altered flower morphology and foliar stipule formation in 4CL lines. Upregulation of these sucrose metabolism genes appears to directly impact primary growth and therefore biomass production in tobacco.


Assuntos
Biomassa , Flores/crescimento & desenvolvimento , Nicotiana , Plantas Geneticamente Modificadas , Sacarose/metabolismo , Regulação para Cima , Biotecnologia/métodos , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Transgenes/genética , Transgenes/fisiologia , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA