Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Pharmacol ; 14: 1296188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38178863

RESUMO

Background: The thromboxane receptor (TP) antagonist NTP42 is in clinical development for treatment of cardiopulmonary diseases, such as pulmonary arterial hypertension. In this randomized, placebo-controlled Phase I clinical trial, NTP42, administered as the oral formulation NTP42:KVA4, was evaluated for safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) in healthy males. Methods: The first-in-human trial had three Parts: A, single ascending dose (SAD) study with seven groups given 0.25-243 mg NTP42:KVA4 or placebo; B, food effect study where one SAD group (9 mg) was also given NTP42:KVA4 or placebo after a high-fat breakfast; C, multiple ascending dose study with three groups given 15-135 mg NTP42:KVA4 or placebo once-daily for 7 days. Results: Seventy-nine volunteers participated. No serious adverse events occurred, where any drug- or placebo-related adverse events were mild to moderate, with no correlation to NTP42:KVA4 dose. NTP42 was rapidly absorbed, yielding dose proportional increases in exposure after single and repeat dosing. PK confirmed that, with a clearance (T1/2) of 18.7 h, NTP42:KVA4 is suited to once-daily dosing, can be taken with or without food, and does not accumulate on repeat dosing. At doses ≥1 mg, NTP42 led to complete and sustained inhibition of thromboxane-, but not ADP-, induced platelet aggregation ex vivo, with direct correlation between NTP42 exposure and duration of PD effects. Conclusion: Orally administered NTP42:KVA4 was well tolerated, with favorable PK/PD profiles and evidence of specific TP target engagement. These findings support continued clinical development of NTP42:KVA4 for cardiopulmonary or other relevant diseases with unmet needs. Clinical Trial Registration: clinicaltrials.gov, identifier NCT04919863.

2.
Front Cardiovasc Med ; 9: 1063967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588576

RESUMO

Background: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary artery pressure leading to right ventricular (RV) failure. While current PAH therapies improve patient outlook, they show limited benefit in attenuating RV dysfunction. Recent investigations demonstrated that the thromboxane (TX) A2 receptor (TP) antagonist NTP42 attenuates experimental PAH across key hemodynamic parameters in the lungs and heart. This study aimed to validate the efficacy of NTP42:KVA4, a novel oral formulation of NTP42 in clinical development, in preclinical models of PAH while also, critically, investigating its direct effects on RV dysfunction. Methods: The effects of NTP42:KVA4 were evaluated in the monocrotaline (MCT) and pulmonary artery banding (PAB) models of PAH and RV dysfunction, respectively, and when compared with leading standard-of-care (SOC) PAH drugs. In addition, the expression of the TP, the target for NTP42, was investigated in cardiac tissue from several other related disease models, and from subjects with PAH and dilated cardiomyopathy (DCM). Results: In the MCT-PAH model, NTP42:KVA4 alleviated disease-induced changes in cardiopulmonary hemodynamics, pulmonary vascular remodeling, inflammation, and fibrosis, to a similar or greater extent than the PAH SOCs tested. In the PAB model, NTP42:KVA4 improved RV geometries and contractility, normalized RV stiffness, and significantly increased RV ejection fraction. In both models, NTP42:KVA4 promoted beneficial RV adaptation, decreasing cellular hypertrophy, and increasing vascularization. Notably, elevated expression of the TP target was observed both in RV tissue from these and related disease models, and in clinical RV specimens of PAH and DCM. Conclusion: This study shows that, through antagonism of TP signaling, NTP42:KVA4 attenuates experimental PAH pathophysiology, not only alleviating pulmonary pathologies but also reducing RV remodeling, promoting beneficial hypertrophy, and improving cardiac function. The findings suggest a direct cardioprotective effect for NTP42:KVA4, and its potential to be a disease-modifying therapy in PAH and other cardiac conditions.

3.
Eur J Pharmacol ; 889: 173658, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33121950

RESUMO

NTP42 is a novel antagonist of the thromboxane A2 receptor (TP) in development for the treatment of pulmonary arterial hypertension (PAH). Recent studies demonstrated that NTP42 and TP antagonism have a role in alleviating PAH pathophysiology. However, the efficacy of NTP42 when used in combination with existing PAH therapies has not yet been investigated. Herein, the Sugen 5416/hypoxia (SuHx)-induced PAH model was employed to evaluate the efficacy of NTP42 when used alone or in dual-therapy with Sildenafil, a PAH standard-of-care. PAH was induced in rats by injection of Sugen 5416 and exposure to hypoxia for 21 days. Thereafter, animals were treated orally twice-daily for 28 days with either vehicle, NTP42 (0.05 mg/kg), Sildenafil (50 mg/kg), or NTP42+Sildenafil (0.05 mg/kg + 50 mg/kg, respectively). While Sildenafil or NTP42 mono-therapy led to non-significant reductions in the SuHx-induced rises in mean pulmonary arterial pressure (mPAP) or right ventricular systolic pressure (RSVP), combined use of NTP42+Sildenafil significantly reduced these increases in mPAP and RVSP. Detailed histologic analyses of pulmonary vessel remodelling, right ventricular hypertrophy and fibrosis demonstrated that while NTP42 and Sildenafil in mono-therapy resulted in significant benefits, NTP42+Sildenafil in dual-therapy showed an even greater benefit over either drug used alone. In summary, combined use of NTP42+Sildenafil in dual-therapy confers an even greater benefit in treating or offsetting key aetiologies underlying PAH. These findings corroborate earlier preclinical findings suggesting that, through antagonism of TP signalling, NTP42 attenuates PAH pathophysiology, positioning it as a novel therapeutic for use alone or in combination therapy regimens.


Assuntos
Hipóxia/tratamento farmacológico , Indóis/toxicidade , Hipertensão Arterial Pulmonar/tratamento farmacológico , Pirróis/toxicidade , Receptores de Tromboxano A2 e Prostaglandina H2/antagonistas & inibidores , Citrato de Sildenafila/administração & dosagem , Inibidores da Angiogênese/toxicidade , Animais , Quimioterapia Combinada , Hipóxia/induzido quimicamente , Hipóxia/metabolismo , Masculino , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Ratos , Ratos Wistar , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Resultado do Tratamento , Vasodilatadores/administração & dosagem
4.
BMC Pulm Med ; 20(1): 85, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252727

RESUMO

BACKGROUND: NTP42 is a novel antagonist of the thromboxane prostanoid receptor (TP), currently in development for the treatment of pulmonary arterial hypertension (PAH). PAH is a devastating disease with multiple pathophysiological hallmarks including excessive pulmonary vasoconstriction, vascular remodelling, inflammation, fibrosis, in situ thrombosis and right ventricular hypertrophy. Signalling through the TP, thromboxane (TX) A2 is a potent vasoconstrictor and mediator of platelet aggregation. It is also a pro-mitogenic, pro-inflammatory and pro-fibrotic agent. Moreover, the TP also mediates the adverse actions of the isoprostane 8-iso-prostaglandin F2α, a free-radical-derived product of arachidonic acid produced in abundance during oxidative injury. Mechanistically, TP antagonists should treat most of the hallmarks of PAH, including inhibiting the excessive vasoconstriction and pulmonary artery remodelling, in situ thrombosis, inflammation and fibrosis. This study aimed to investigate the efficacy of NTP42 in the monocrotaline (MCT)-induced PAH rat model, alongside current standard-of-care drugs. METHODS: PAH was induced by subcutaneous injection of 60 mg/kg MCT in male Wistar-Kyoto rats. Animals were assigned into groups: 1. 'No MCT'; 2. 'MCT Only'; 3. MCT + NTP42 (0.25 mg/kg BID); 4. MCT + Sildenafil (50 mg/kg BID), and 5. MCT + Selexipag (1 mg/kg BID), where 28-day drug treatment was initiated within 24 h post-MCT. RESULTS: From haemodynamic assessments, NTP42 reduced the MCT-induced PAH, including mean pulmonary arterial pressure (mPAP) and right systolic ventricular pressure (RSVP), being at least comparable to the standard-of-care drugs Sildenafil or Selexipag in bringing about these effects. Moreover, NTP42 was superior to Sildenafil and Selexipag in significantly reducing pulmonary vascular remodelling, inflammatory mast cell infiltration and fibrosis in MCT-treated animals. CONCLUSIONS: These findings suggest that NTP42 and antagonism of the TP signalling pathway have a relevant role in alleviating the pathophysiology of PAH, representing a novel therapeutic target with marked benefits over existing standard-of-care therapies.


Assuntos
Anti-Hipertensivos/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Artéria Pulmonar/fisiopatologia , Receptores de Tromboxanos/antagonistas & inibidores , Acetamidas/farmacologia , Animais , Modelos Animais de Doenças , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Hemodinâmica/efeitos dos fármacos , Humanos , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Masculino , Monocrotalina , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Pirazinas/farmacologia , Ratos , Ratos Endogâmicos WKY , Citrato de Sildenafila/farmacologia , Remodelação Vascular/efeitos dos fármacos
5.
Exp Mol Pathol ; 110: 104277, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271729

RESUMO

Inflammation is linked to prostate cancer (PCa) and to other diseases of the prostate. The prostanoid thromboxane (TX)A2 is a pro-inflammatory mediator implicated in several prostatic diseases, including PCa. TXA2 signals through the TPα and TPß isoforms of the T Prostanoid receptor (TP) which exhibit several functional differences and transcriptionally regulated by distinct promoters Prm1 and Prm3, respectively, within the TBXA2R gene. This study examined the expression of TPα and TPß in inflammatory infiltrates within human prostate tissue. Strikingly, TPß expression was detected in 94% of infiltrates, including in B- and T-lymphocytes and macrophages. In contrast, TPα was more variably expressed and, where present, expression was mainly confined to macrophages. To gain molecular insight into these findings, expression of TPα and TPß was evaluated as a function of monocyte-to-macrophage differentiation in THP-1 cells. Expression of both TPα and TPß was upregulated following phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 to their macrophage lineage. Furthermore, FOXP1, an essential transcriptional regulator down-regulated during monocyte-to-macrophage differentiation, was identified as a key trans-acting factor regulating TPß expression through Prm3 in THP-1 cells. Knockdown of FOXP1 increased TPß, but not TPα, expression in THP-1 cells, while genetic reporter and chromatin immunoprecipitation (ChIP) analyses established that FOXP1 exerts its repressive effect on TPß through binding to four cis-elements within Prm3. Collectively, FOXP1 functions as a transcriptional repressor of TPß in monocytes. This repression is lifted in differentiated macrophages, allowing for upregulation of TPß expression and possibly accounting for the prominent expression of TPß in prostate tissue-resident macrophages.


Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica , Inflamação/genética , Próstata/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Doença Crônica , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Monócitos/citologia , Monócitos/metabolismo , Prostaglandinas/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Células THP-1
8.
Cardiovasc Res ; 114(8): 1165-1177, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29584808

RESUMO

Aims: Pulmonary arterial hypertension (PAH) is a devastating disease and treatment options are limited. Urocortin-2 (Ucn-2) has shown promising therapeutic effects in experimental and clinical left ventricular heart failure (HF). Our aim was to analyse the expression of Ucn-2 in human and experimental PAH, and to investigate the effects of human Ucn-2 (hUcn-2) administration in rats with monocrotaline (MCT)-induced pulmonary hypertension (PH). Methods and results: Tissue samples were collected from patients with and without PAH and from rats with MCT-induced PH. hUcn-2 (5 µg/kg, bi-daily, i.p., for 10 days) or vehicle was administered to male wistar rats subjected to MCT injection or to pulmonary artery banding (PAB) to induce right ventricular (RV) overload without PAH. Expression of Ucn-2 and its receptor was increased in the RV of patients and rats with PAH. hUcn-2 treatment reduced PAH in MCT rats, resulting in decreased morbidity, improved exercise capacity and attenuated pulmonary arterial and RV remodelling and dysfunction. Additionally, RV gene expression of hypertrophy and failure signalling pathways were attenuated. hUcn-2 treatment also attenuated PAB-induced RV hypertrophy. Conclusions: Ucn-2 levels are altered in human and experimental PAH. hUcn-2 treatment attenuates PAH and RV dysfunction in MCT-induced PH, has direct anti-remodelling effects on the pressure-overloaded RV, and improves pulmonary vascular function.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Hormônio Liberador da Corticotropina/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/prevenção & controle , Artéria Pulmonar/efeitos dos fármacos , Urocortinas/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Animais , Estudos de Casos e Controles , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Tolerância ao Exercício/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Artéria Pulmonar/fisiopatologia , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Urocortinas/metabolismo , Remodelação Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
11.
Prostaglandins Other Lipid Mediat ; 121(Pt A): 70-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25936507

RESUMO

The prostanoid Prostacyclin plays diverse physiologic roles within the vasculature and other systems, and is widely implicated in several cardiovascular, pulmonary and renal diseases. Despite this, knowledge of the factors regulating expression of the I prostanoid receptor (the IP) remained largely unknown. This review details recent advances in understanding the key transcriptional regulators determining expression of the PTGIR gene in the human vasculature and the identification of novel interacting partners of the IP that impact on its function therein. Included in this are the trans-acting factors that regulate expression of the PTGIR under basal- and regulated-conditions, particularly those determining its up-regulation in response to cellular differentiation, estrogen and low serum-cholesterol. Moreover, the functional implications of the interactions between the IP with PDZK1, a multi PDZ-domain containing protein essential for reverse-cholesterol transport and endothelialization, and the IP with IKEPP, the intestinal and kidney enriched PDZ protein, for the role of the prostacyclin-IP axis within the vasculature are reviewed.


Assuntos
Regulação da Expressão Gênica , Receptores de Epoprostenol/genética , Receptores de Epoprostenol/metabolismo , Transdução de Sinais , Transcrição Gênica , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Receptores de Epoprostenol/química
12.
Diabetes ; 63(12): 4314-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25008184

RESUMO

Induced in high glucose-1 (IHG-1) is a conserved mitochondrial protein associated with diabetic nephropathy (DN) that amplifies profibrotic transforming growth factor (TGF)-ß1 signaling and increases mitochondrial biogenesis. Here we report that inhibition of endogenous IHG-1 expression results in reduced mitochondrial respiratory capacity, ATP production, and mitochondrial fusion. Conversely, overexpression of IHG-1 leads to increased mitochondrial fusion and also protects cells from reactive oxygen species-induced apoptosis. IHG-1 forms complexes with known mediators of mitochondrial fusion-mitofusins (Mfns) 1 and 2-and enhances the GTP-binding capacity of Mfn2, suggesting that IHG-1 acts as a guanine nucleotide exchange factor. IHG-1 must be localized to mitochondria to interact with Mfn1 and Mfn2, and this interaction is necessary for increased IHG-1-mediated mitochondrial fusion. Together, these findings indicate that IHG-1 is a novel regulator of both mitochondrial dynamics and bioenergetic function and contributes to cell survival following oxidant stress. We propose that in diabetic kidney disease increased IHG-1 expression protects cell viability and enhances the actions of TGF-ß, leading to renal proximal tubule dedifferentiation, an important event in the pathogenesis of this devastating condition.


Assuntos
Nefropatias Diabéticas/metabolismo , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas/genética , Apoptose/genética , Respiração Celular/genética , Sobrevivência Celular/genética , Fibrose/genética , Fibrose/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
13.
Biochim Biophys Acta ; 1839(6): 476-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24747176

RESUMO

The prostanoid thromboxane (TX) A(2) plays a central role in hemostasis and is increasingly implicated in neoplastic disease, including prostate and breast cancers. In humans, TXA(2) signals through the TPα and TPß isoforms of the T prostanoid receptor, two structurally related receptors transcriptionally regulated by distinct promoters, Prm1 and Prm3, respectively, within the TP gene. Focusing on TPα, the current study investigated its expression and transcriptional regulation through Prm1 in prostate and breast cancers. Expression of TPα correlated with increasing prostate and breast tissue tumor grade while the TXA(2) mimetic U46619 promoted both proliferation and migration of the respective prostate (PC3) and breast (MCF-7 and MDA-MD-231) derived-carcinoma cell lines. Through 5' deletional and genetic reporter analyses, several functional upstream repressor regions (URRs) were identified within Prm1 in PC3, MCF-7 and MDA-MB-231 cells while site-directed mutagenesis identified the tumor suppressors Wilms' tumor (WT)1 and hypermethylated in cancer (HIC) 1 as the trans-acting factors regulating those repressor regions. Chromatin immunoprecipitation (ChIP) studies confirmed that WT1 binds in vivo to multiple GC-enriched WT1 cis-elements within the URRs of Prm1 in PC3, MCF-7 and MDA-MB-231 cells. Furthermore, ChIP analyses established that HIC1 binds in vivo to the HIC1((b))cis-element within Prm1 in PC3 and MCF-7 cells but not in the MDA-MB-231 carcinoma line. Collectively, these data establish that WT1 and HIC1, both tumor suppressors implicated in prostate and breast cancers, transcriptionally repress TPα expression and thereby provide a strong genetic basis for understanding the role of TXA2 in the progression of certain human cancers.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Regulação Miogênica/metabolismo , Neoplasias da Próstata/genética , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Proteínas WT1/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Feminino , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Masculino , Mutagênese Sítio-Dirigida , Fatores de Regulação Miogênica/genética , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Elementos Reguladores de Transcrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores , Transcrição Gênica , Células Tumorais Cultivadas , Proteínas WT1/genética
14.
Biochim Biophys Acta ; 1823(10): 1998-2012, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22884631

RESUMO

Prostacyclin and its I prostanoid receptor, the IP, play central roles in hemostasis and in re-endothelialization in response to vascular injury. Herein, intestinal and kidney enriched PDZ protein (IKEPP) was identified as an interactant of the human (h) IP mediated through binding of PDZ domain 1 (PDZ(D1)) and, to a lesser extent, PDZ(D2) of IKEPP to a carboxyl-terminal Class I 'PDZ ligand' within the hIP. While the interaction is constitutive, agonist-activation of the hIP leads to cAMP-dependent protein kinase (PK) A and PKC-phosphorylation of IKEPP, coinciding with its increased interaction with the hIP. Ectopic expression of IKEPP increases functional expression of the hIP, enhancing its ligand binding and agonist-induced cAMP generation. Originally thought to be restricted to renal and gastrointestinal tissues, herein, IKEPP was also found to be expressed in vascular endothelial cells where it co-localizes and complexes with the hIP. Furthermore, siRNA-disruption of IKEPP expression impaired hIP-induced endothelial cell migration and in vitro angiogenesis, revealing the functional importance of the IKEPP:IP interaction within the vascular endothelium. Identification of IKEPP as a functional interactant of the IP reveals novel mechanistic insights into the role of these proteins within the vasculature and, potentially, in other systems where they are co-expressed.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Receptores de Prostaglandina/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Moléculas de Adesão Celular , Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Rim/citologia , Ligantes , Modelos Biológicos , Proteínas de Neoplasias/química , Neovascularização Fisiológica , Fosfoproteínas/química , Ligação Proteica , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Receptores de Epoprostenol , Receptores de Prostaglandina/agonistas , Receptores de Prostaglandina/química , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/química
15.
Mol Biol Cell ; 22(15): 2664-79, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21653824

RESUMO

Prostacyclin is increasingly implicated in re-endothelialization and angiogenesis but through largely unknown mechanisms. Herein the high-density lipoprotein (HDL) scavenger receptor class B, type 1 (SR-B1) adapter protein PDZ domain-containing protein 1 (PDZK1) was identified as an interactant of the human prostacyclin receptor (hIP) involving a Class I PDZ ligand at its carboxyl terminus and PDZ domains 1, 3, and 4 of PDZK1. Although the interaction is constitutive, it may be dynamically regulated following cicaprost activation of the hIP through a mechanism involving cAMP-dependent protein kinase (PK)A-phosphorylation of PDZK1 at Ser-505. Although PDZK1 did not increase overall levels of the hIP, it increased its functional expression at the cell surface, enhancing ligand binding and cicaprost-induced cAMP generation. Consistent with its role in re-endothelialization and angiogenesis, cicaprost activation of the hIP increased endothelial cell migration and tube formation/in vitro angiogenesis, effects completely abrogated by the specific IP antagonist RO1138452. Furthermore, similar to HDL/SR-B1, small interfering RNA (siRNA)-targeted disruption of PDZK1 abolished cicaprost-mediated endothelial responses but did not affect VEGF responses. Considering the essential role played by prostacyclin throughout the cardiovascular system, identification of PDZK1 as a functional interactant of the hIP sheds significant mechanistic insights into the protective roles of these key players, and potentially HDL/SR-B1, within the vascular endothelium.


Assuntos
Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Lipoproteínas HDL/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Compostos de Benzil/farmacologia , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/citologia , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imidazóis/farmacologia , Proteínas de Membrana , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Domínios PDZ , Fosforilação , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptores de Epoprostenol , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/genética
16.
J Biol Chem ; 286(17): 15440-57, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21357687

RESUMO

In humans, thromboxane (TX) A(2) signals through the TPα and TPß isoforms of the TXA(2) receptor or TP. Here, the RhoA effector protein kinase C-related kinase (PRK) 1 was identified as an interactant of both TPα and ΤPß involving common and unique sequences within their respective C-terminal (C)-tail domains and the kinase domain of PRK1 (PRK1(640-942)). Although the interaction with PRK1 is constitutive, agonist activation of TPα/TPß did not regulate the complex per se but enhanced PRK1 activation leading to phosphorylation of its general substrate histone H1 in vitro. Altered PRK1 and TP expression and signaling are increasingly implicated in certain neoplasms, particularly in androgen-associated prostate carcinomas. Agonist activation of TPα/TPß led to phosphorylation of histone H3 at Thr(11) (H3 Thr(11)), a previously recognized specific marker of androgen-induced chromatin remodeling, in the prostate LNCaP and PC-3 cell lines but not in primary vascular smooth muscle or endothelial cells. Moreover, this effect was augmented by dihydrotestosterone in androgen-responsive LNCaP but not in nonresponsive PC-3 cells. Furthermore, PRK1 was confirmed to constitutively interact with TPα/TPß in both LNCaP and PC-3 cells, and targeted disruption of PRK1 impaired TPα/TPß-mediated H3 Thr(11) phosphorylation in, and cell migration of, both prostate cell types. Collectively, considering the role of TXA(2) as a potent mediator of RhoA signaling, the identification of PRK1 as a bona fide interactant of TPα/TPß, and leading to H3 Thr(11) phosphorylation to regulate cell migration, has broad functional significance such as within the vasculature and in neoplasms in which both PRK1 and the TPs are increasingly implicated.


Assuntos
Neoplasias da Próstata/patologia , Proteína Quinase C/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Histonas/metabolismo , Humanos , Masculino , Fosforilação , Neoplasias da Próstata/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo
17.
Biochim Biophys Acta ; 1808(4): 1202-18, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21223948

RESUMO

The human prostacyclin receptor (hIP) undergoes agonist-dependent trafficking involving a direct interaction with Rab11a GTPase. The region of interaction was localised to a 14 residue Rab11a binding domain (RBD) within the proximal carboxyl-terminal (C)-tail domain of the hIP, consisting of Val(299)-Val(307) within the eighth helical domain (α-H8) adjacent to the palmitoylated residues at Cys(308)-Cys(311). However, the factors determining the anterograde transport of the newly synthesised hIP from the endoplasmic reticulum (ER) to the plasma membrane (PM) have not been identified. The aim of the current study was to identify the major ER export motif(s) within the hIP initially by investigating the role of Lys residues in its maturation and processing. Through site-directed and Ala-scanning mutational studies in combination with analyses of protein expression and maturation, functional analyses of ligand binding, agonist-induced intracellular signalling and confocal image analyses, it was determined that Lys(297), Arg(302) and Lys(304) located within α-H8 represent the critical determinants of a novel ER export motif of the hIP. Furthermore, while substitution of those critical residues significantly impaired maturation and processing of the hIP, replacement of the positively charged Lys with Arg residues, and vice versa, was functionally permissible. Hence, this study has identified a novel 8 residue ER export motif within the functionally important α-H8 of the hIP. This ER export motif, defined by "K/R(X)(4)K/R(X)K/R," has a strict requirement for positively charged, basic Lys/Arg residues at the 1st, 6th and 8th positions and appears to be evolutionarily conserved within IP sequences from mouse to man.


Assuntos
Motivos de Aminoácidos , Retículo Endoplasmático/metabolismo , Receptores de Epoprostenol/química , Receptores de Epoprostenol/metabolismo , Sequência de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Sítios de Ligação , Western Blotting , Cálcio/metabolismo , Calnexina/metabolismo , Biologia Computacional , Células HEK293 , Humanos , Lisina/química , Lisina/genética , Lisina/metabolismo , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Ensaio Radioligante , Receptores de Epoprostenol/genética , Homologia de Sequência de Aminoácidos
18.
Cell Signal ; 23(4): 700-17, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21172430

RESUMO

In humans, thromboxane (TX) A2 signals through the TPα and TPß isoforms of its G-protein coupled TXA2 receptor (TP) to mediate a host of (patho)physiologic responses. Herein, angio-associated migratory cell protein (AAMP) was identified as a novel interacting partner of both TPα and TPß through an interaction dependent on common (residues 312-328) and unique (residues 366-392 of TPß) sequences within their carboxyl-terminal (C)-tail domains. While the interaction was constitutive in mammalian cells, agonist-stimulation of TPα/TPß led to a transient dissociation of AAMP from immune complexes which coincided with a transient redistribution of AAMP from its localization in an intracellular fibrous network. Although the GTPase RhoA is a downstream effector of both AAMP and the TPs, AAMP did not influence TP-mediated RhoA or vice versa. Small interfering RNA (siRNA)-mediated disruption of AAMP expression decreased migration of primary human coronary artery smooth muscle cells (1° hCoASMCs). Moreover, siRNA-disruption of AAMP significantly impaired 1° hCoASMC migration in the presence of the TXA2 mimetic U46619 but did not affect VEGF-mediated cell migration. Given their roles within the vasculature, the identification of a specific interaction between TPα/TPß and AAMP is likely to have substantial functional implications for vascular pathologies in which they are both implicated.


Assuntos
Proteínas de Transporte/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Tromboxano A2/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Actinina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/genética , Movimento Celular , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Dados de Sequência Molecular , Miócitos de Músculo Liso/fisiologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/agonistas , RNA Interferente Pequeno/genética , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/genética , Receptores de Tromboxano A2 e Prostaglandina H2/agonistas , Proteínas Recombinantes de Fusão/agonistas , Proteínas Recombinantes de Fusão/metabolismo , Tromboxano A2/agonistas , Proteína rhoA de Ligação ao GTP/metabolismo
19.
J Biol Chem ; 285(24): 18709-26, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20395296

RESUMO

The human prostacyclin receptor (hIP) undergoes agonist-induced internalization and subsequent recyclization in slowly recycling endosomes involving its direct physical interaction with Rab11a. Moreover, interaction with Rab11a localizes to a 22-residue putative Rab11 binding domain (RBD) within the carboxyl-terminal tail of the hIP, proximal to the transmembrane 7 (TM7) domain. Because the proposed RBD contains Cys(308) and Cys(311), in addition to Cys(309), that are known to undergo palmitoylation, we sought to identify the structure/function determinants of the RBD, including the influence of palmitoylation, on agonist-induced trafficking of the hIP. Through complementary approaches in yeast and mammalian cells along with computational structural studies, the RBD was localized to a 14-residue domain, between Val(299) and Leu(312), and proposed to be organized into an eighth alpha-helical domain (alpha-helix 8), comprising Val(299)-Val(307), adjacent to the palmitoylated residues at Cys(308)-Cys(311). From mutational and [(3)H]palmitate metabolic labeling studies, it is proposed that palmitoylation at Cys(311) in addition to agonist-regulated deacylation at Cys(309) > Cys(308) may dynamically position alpha-helix 8 in proximity to Rab11a, to regulate agonist-induced intracellular trafficking of the hIP. Moreover, Ala-scanning mutagenesis identified several hydrophobic residues within alpha-helix 8 as necessary for the interaction with Rab11a. Given the diverse membership of the G protein-coupled receptor superfamily, of which many members are also predicted to contain an alpha-helical 8 domain proximal to TM7 and, often, adjacent to palmitoylable cysteine(s), the identification of a functional role for alpha-helix 8, as exemplified as an RBD for the hIP, is likely to have broader significance for certain members of the superfamily.


Assuntos
Ácidos Palmíticos/química , Receptores de Epoprostenol/química , Proteínas rab de Ligação ao GTP/química , Biologia Computacional/métodos , Cisteína/química , Humanos , Leucina/química , Ácido Palmítico/química , Prostaglandinas/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Valina/química
20.
J Mol Biol ; 394(1): 29-45, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19747485

RESUMO

Thromboxane plays an essential role in hemostasis, regulating platelet aggregation and vessel tone. In humans, it signals through the TPalpha and TPbeta isoforms that are transcriptionally regulated by distinct promoters Prm1 and Prm3, respectively. Herein, the consequence of megakaryocytic differentiation on Prm1-directed TPalpha expression was investigated. Phorbol 12-myristate 13-acetate (PMA) treatment substantially increased TPalpha mRNA and Prm1-directed gene expression in human erythroleukemia and K562 cells. Deletional analyses localized the major responsive element(s) to the upstream -8500 to -7504 region while mutation of four WT1/Egr1/Sp1 cis elements therein established that each contributes to the induction. Moreover, PMA increased Egr1, but not WT1 or Sp1, expression while the NGFI-A-binding protein 1 co-repressor impaired PMA induction of Egr1- and Prm1-directed gene expression. Chromatin immunoprecipitations established that WT1 is predominantly bound in vivo to the 5' Prm1 region in non-differentiated human erythroleukemia cells. In response to PMA, there was initial induction in Egr1 and associated reduction in WT1 binding to Prm1 in vivo, which was displaced by Sp1 following sustained treatment. Collectively, data establish that regulated WT1 followed by sequential Egr1 and Sp1 binding to elements within Prm1 mediate repression and subsequent induction of TPalpha during differentiation into the megakaryocytic phenotype, shedding significant insights into factors regulating TPalpha expression therein.


Assuntos
Diferenciação Celular , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Megacariócitos/citologia , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Fator de Transcrição Sp1/metabolismo , Proteínas WT1/metabolismo , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Análise Mutacional de DNA , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sequência Rica em GC , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Luciferases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Protaminas/genética , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Proteínas Repressoras/metabolismo , Deleção de Sequência , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA