Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Inform ; 134: 104187, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055637

RESUMO

Molecular disease subtype discovery from omics data is an important research problem in precision medicine. The biggest challenges are the skewed distribution and data variability in the measurements of omics data. These challenges complicate the efficient identification of molecular disease subtypes defined by clinical differences, such as survival. Existing approaches adopt kernels to construct patient similarity graphs from each view through pairwise matching. However, the distance functions used in kernels are unable to utilize the potentially critical information of extreme values and data variability which leads to the lack of robustness. In this paper, a novel robust distance metric (ROMDEX) is proposed to construct similarity graphs for molecular disease subtypes from omics data, which is able to address the data variability and extreme values challenges. The proposed approach is validated on multiple TCGA cancer datasets, and the results are compared with multiple baseline disease subtyping methods. The evaluation of results is based on Kaplan-Meier survival time analysis, which is validated using statistical tests e.g, Cox-proportional hazard (Cox p-value). We reject the null hypothesis that the cohorts have the same hazard, for the P-values less than 0.05. The proposed approach achieved best P-values of 0.00181, 0.00171, and 0.00758 for Gene Expression, DNA Methylation, and MicroRNA data respectively, which shows significant difference in survival between the cohorts. In the results, the proposed approach outperformed the existing state-of-the-art (MRGC, PINS, SNF, Consensus Clustering and Icluster+) disease subtyping approaches on various individual disease views of multiple TCGA datasets.


Assuntos
MicroRNAs , Neoplasias , Análise por Conglomerados , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisão
2.
Sensors (Basel) ; 22(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270840

RESUMO

The Internet of Things consists of "things" made up of small sensors and actuators capable of interacting with the environment. The combination of devices with sensor networks and Internet access enables the communication between the physical world and cyberspace, enabling the development of solutions to many real-world problems. However, most existing applications are dedicated to solving a specific problem using only private sensor networks, which limits the actual capacity of the Internet of Things. In addition, these applications are concerned with the quality of service offered by the sensor network or the correct analysis method that can lead to inaccurate or irrelevant conclusions, which can cause significant harm for decision makers. In this context, we propose two systematic methods to analyze spatially distributed data Internet of Things. We show with the results that geostatistics and spatial statistics are more appropriate than classical statistics to do this analysis.


Assuntos
Internet das Coisas , Comunicação , Redes de Comunicação de Computadores , Internet
3.
Heliyon ; 4(7): e00690, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30073212

RESUMO

Science Gateways have been widely accepted as an important tool in academic research, due to their flexibility, simple use and extension. However, such systems may yield performance traps that delay work progress and cause waste of resources or generation of poor scientific results. This paper addresses an investigation on some of the failures in a Galaxy system and analyses of their impacts. The use case is based on protein structure prediction experiments performed. A novel science gateway component is proposed towards the definition of the relation between general parameters and capacity of machines. The machine-learning strategies used appoint the best machine setup in a heterogeneous environment and the results show a complete overview of Galaxy, a diverse platform organization, and the workload behavior. A Support Vector Regression (SVR) model generated and based on a historic data-set provided an excellent learning module and proved a varied platform configuration is valuable as infrastructure in a science gateway. The results revealed the advantages of investing in local cluster infrastructures as a base for scientific experiments.

4.
PLoS One ; 10(11): e0141914, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555730

RESUMO

Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price.


Assuntos
Computação em Nuvem , Software , Carga de Trabalho , Humanos
5.
PLoS One ; 10(6): e0127677, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26068216

RESUMO

This paper proposes a system named AWSCS (Automatic Web Service Composition System) to evaluate different approaches for automatic composition of Web services, based on QoS parameters that are measured at execution time. The AWSCS is a system to implement different approaches for automatic composition of Web services and also to execute the resulting flows from these approaches. Aiming at demonstrating the results of this paper, a scenario was developed, where empirical flows were built to demonstrate the operation of AWSCS, since algorithms for automatic composition are not readily available to test. The results allow us to study the behaviour of running composite Web services, when flows with the same functionality but different problem-solving strategies were compared. Furthermore, we observed that the influence of the load applied on the running system as the type of load submitted to the system is an important factor to define which approach for the Web service composition can achieve the best performance in production.


Assuntos
Internet , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA