Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioinform ; 3: 1268899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076029

RESUMO

In this study, we introduce Blob-B-Gone, a lightweight framework to computationally differentiate and eventually remove dense isotropic localization accumulations (blobs) caused by artifactually immobilized particles in MINFLUX single-particle tracking (SPT) measurements. This approach uses purely geometrical features extracted from MINFLUX-detected single-particle trajectories, which are treated as point clouds of localizations. Employing k-means++ clustering, we perform single-shot separation of the feature space to rapidly extract blobs from the dataset without the need for training. We automatically annotate the resulting sub-sets and, finally, evaluate our results by means of principal component analysis (PCA), highlighting a clear separation in the feature space. We demonstrate our approach using two- and three-dimensional simulations of freely diffusing particles and blob artifacts based on parameters extracted from hand-labeled MINFLUX tracking data of fixed 23-nm bead samples and two-dimensional diffusing quantum dots on model lipid membranes. Applying Blob-B-Gone, we achieve a clear distinction between blob-like and other trajectories, represented in F1 scores of 0.998 (2D) and 1.0 (3D) as well as 0.995 (balanced) and 0.994 (imbalanced). This framework can be straightforwardly applied to similar situations, where discerning between blob and elongated time traces is desirable. Given a number of localizations sufficient to express geometric features, the method can operate on any generic point clouds presented to it, regardless of its origin.

2.
J Microsc ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054327

RESUMO

Molecular mobility is an important measure in biological functionality, as molecules have to diffuse to meet and interact and perform actions. Measurement of mobility requires specific tools such as fluorescence correlation spectroscopy (FCS). Especially, combination with superresolution stimulated emission depletion microscopy (STED-FCS), whether in a point- or beam-scanning mode, has proven valuable for determination of anomalous diffusion. STED-FCS however relies on an accurate calibration of the effective observation spot formed for different laser powers of the additional STED laser. This poster article highlights the need for calibration measurements and outlines that rather simple procedures involving acetone cover-glass surface cleaning only, instead of piranha cover-glass surface cleaning, and point instead of more complex scanning STED-FCS are sufficient for calibration.

3.
F1000Res ; 10: 838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186271

RESUMO

Single particle tracking (SPT) is one of the most widely used tools in optical microscopy to evaluate particle mobility in a variety of situations, including cellular and model membrane dynamics. Recent technological developments, such as Interferometric Scattering microscopy, have allowed recording of long, uninterrupted single particle trajectories at kilohertz framerates. The resulting data, where particles are continuously detected and do not displace much between observations, thereby do not require complex linking algorithms. Moreover, while these measurements offer more details into the short-term diffusion behaviour of the tracked particles, they are also subject to the influence of localisation uncertainties, which are often underestimated by conventional analysis pipelines. we thus developed a Python library, under the name of TRAIT2D (Tracking Analysis Toolbox - 2D version), in order to track particle diffusion at high sampling rates, and analyse the resulting trajectories with an innovative approach. The data analysis pipeline introduced is more localisation-uncertainty aware, and also selects the most appropriate diffusion model for the data provided on a statistical basis. A trajectory simulation platform also allows the user to handily generate trajectories and even synthetic time-lapses to test alternative tracking algorithms and data analysis approaches. A high degree of customisation for the analysis pipeline, for example with the introduction of different diffusion modes, is possible from the source code. Finally, the presence of graphical user interfaces lowers the access barrier for users with little to no programming experience.


Assuntos
Algoritmos , Software , Simulação por Computador , Difusão
4.
J Phys D Appl Phys ; 51(23): 235401, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29853718

RESUMO

Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag-gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40 nm) and temporal (50 ⩽ t ⩽ 100 ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40 nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag-gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2-3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.

5.
J Phys D Appl Phys ; 50(13): 134004, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29449744

RESUMO

Lipid packing is a crucial feature of cellular membranes. Quantitative analysis of membrane lipid packing can be achieved using polarity sensitive probes whose emission spectrum depends on the lipid packing. However, detailed insights into the exact mechanisms that cause the changes in the spectra are necessary to interpret experimental fluorescence emission data correctly. Here, we analysed frequently used polarity sensitive probes, Laurdan and di-4-ANEPPDHQ, to test whether the underlying physical mechanisms of their spectral changes are the same and, thus, whether they report on the same physico-chemical properties of the cell membrane. Steady-state spectra as well as time-resolved emission spectra of the probes in solvents and model membranes revealed that they probe different properties of the lipid membrane. Our findings are important for the application of these dyes in cell biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA