Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464072

RESUMO

Cytoskeletal protein ensembles exhibit emergent mechanics where behavior exhibited in teams is not necessarily the sum of the components' single molecule properties. In addition, filaments may act as force sensors that distribute feedback and influence motor protein behavior. To understand the design principles of such emergent mechanics, we developed an approach utilizing QCM-D to measure how actomyosin bundles respond mechanically to environmental variables that alter constituent myosin II motor behavior. We demonstrate that QCM-D can detect changes in actomyosin viscoelasticity due to molecular-level alterations, such as motor concentration and nucleotide state, thus providing evidence for actin's role as a mechanical force-feedback sensor and a new approach for deciphering the fundamental mechanisms of emergent cytoskeletal ensemble crosstalk. Justification: Cytoskeletal ensembles exhibit mechanics that are not necessarily the sum of the components' single molecule properties, and this emergent behavior is not well understood. Cytoskeletal filaments may also act as force sensors that influence constituent motor protein behavior. To understand the elusive design principles of such emergent mechanics, we innovated an approach using QCM-D to measure how actomyosin bundles sense and respond mechanically to environmental variables. We demonstrate for the first time that QCM-D can detect changes in actomyosin viscoelasticity due to molecular-level alterations, thus providing evidence for actin's role as a mechanical force-feedback sensor and a new approach for deciphering the fundamentals of emergent cytoskeletal ensemble crosstalk.

2.
Cytoskeleton (Hoboken) ; 80(5-6): 100-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891731

RESUMO

A quartz crystal microbalance (QCM) is an instrument that has the ability to measure nanogram-level changes in mass on a quartz sensor and is traditionally used to probe surface interactions and assembly kinetics of synthetic systems. The addition of dissipation monitoring (QCM-D) facilitates the study of viscoelastic systems, such as those relevant to molecular and cellular mechanics. Due to real-time recording of frequency and dissipation changes and single protein-level precision, the QCM-D is effective in interrogating the viscoelastic properties of cell surfaces and in vitro cellular components. However, few studies focus on the application of this instrument to cytoskeletal systems, whose dynamic parts create interesting emergent mechanics as ensembles that drive essential tasks, such as division and motility. Here, we review the ability of the QCM-D to characterize key kinetic and mechanical features of the cytoskeleton through in vitro reconstitution and cellular assays and outline how QCM-D studies can yield insightful mechanical data alone and in tandem with other biophysical characterization techniques.


Assuntos
Técnicas Biossensoriais , Técnicas de Microbalança de Cristal de Quartzo , Técnicas de Microbalança de Cristal de Quartzo/métodos , Técnicas Biossensoriais/métodos , Citoesqueleto/metabolismo , Microtúbulos , Membrana Celular
3.
Cell Mol Bioeng ; 15(5): 451-465, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36444350

RESUMO

Introduction: Myosin II has been investigated with optical trapping, but single motor-filament assay arrangements are not reflective of the complex cellular environment. To understand how myosin interactions propagate up in scale to accomplish system force generation, we devised a novel actomyosin ensemble optical trapping assay that reflects the hierarchy and compliancy of a physiological environment and is modular for interrogating force effectors. Methods: Hierarchical actomyosin bundles were formed in vitro. Fluorescent template and cargo actin filaments (AF) were assembled in a flow cell and bundled by myosin. Beads were added in the presence of ATP to bind the cargo AF and activate myosin force generation to be measured by optical tweezers. Results: Three force profiles resulted across a range of myosin concentrations: high force with a ramp-plateau, moderate force with sawtooth movement, and baseline. The three force profiles, as well as high force output, were recovered even at low solution concentration, suggesting that myosins self-optimize within AFs. Individual myosin steps were detected in the ensemble traces, indicating motors are taking one step at a time while others remain engaged in order to sustain productive force generation. Conclusions: Motor communication and system compliancy are significant contributors to force output. Environmental conditions, motors taking individual steps to sustain force, the ability to backslip, and non-linear concentration dependence of force indicate that the actomyosin system contains a force-feedback mechanism that senses the local cytoskeletal environment and communicates to the individual motors whether to be in a high or low duty ratio mode. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00731-1.

4.
Curr Biol ; 32(11): 2416-2429.e6, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504282

RESUMO

Kinesins drive the transport of cellular cargoes as they walk along microtubule tracks; however, recent work has suggested that the physical act of kinesins walking along microtubules can stress the microtubule lattice. Here, we describe a kinesin-1 KIF5C mutant with an increased ability to generate damage sites in the microtubule lattice as compared with the wild-type motor. The expression of the mutant motor in cultured cells resulted in microtubule breakage and fragmentation, suggesting that kinesin-1 variants with increased damage activity would have been selected against during evolution. The increased ability to damage microtubules is not due to the enhanced motility properties of the mutant motor, as the expression of the kinesin-3 motor KIF1A, which has similar single-motor motility properties, also caused increased microtubule pausing, bending, and buckling but not breakage. In cells, motor-induced microtubule breakage could not be prevented by increased α-tubulin K40 acetylation, a post-translational modification known to increase microtubule flexibility. In vitro, lattice damage induced by wild-type KIF5C was repaired by soluble tubulin and resulted in increased rescues and overall microtubule growth, whereas lattice damage induced by the KIF5C mutant resulted in larger repair sites that made the microtubule vulnerable to breakage and fragmentation when under mechanical stress. These results demonstrate that kinesin-1 motility causes defects in and damage to the microtubule lattice in cells. While cells have the capacity to repair lattice damage, conditions that exceed this capacity result in microtubule breakage and fragmentation and may contribute to human disease.


Assuntos
Cinesinas , Microtúbulos , Acetilação , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
5.
J Vis Exp ; (183)2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35604138

RESUMO

Myosins are motor proteins that hydrolyze ATP to step along actin filament (AF) tracks and are essential in cellular processes such as motility and muscle contraction. To understand their force-generating mechanisms, myosin II has been investigated both at the single-molecule (SM) level and as teams of motors in vitro using biophysical methods such as optical trapping. These studies showed that myosin force-generating behavior can differ greatly when moving from the single-molecule level in a three-bead arrangement to groups of motors working together on a rigid bead or coverslip surface in a gliding arrangement. However, these assay constructions do not permit evaluating the group dynamics of myosin within viscoelastic structural hierarchy as they would within a cell. We have developed a method using optical tweezers to investigate the mechanics of force generation by myosin ensembles interacting with multiple actin filaments. These actomyosin bundles facilitate investigation in a hierarchical and compliant environment that captures motor communication and ensemble force output. The customizable nature of the assay allows for altering experimental conditions to understand how modifications to the myosin ensemble, actin filament bundle, or the surrounding environment result in differing force outputs.


Assuntos
Miosinas , Pinças Ópticas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Miosina Tipo II/metabolismo , Miosinas/metabolismo
6.
Molecules ; 26(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34443382

RESUMO

The E-hook of ß-tubulin plays instrumental roles in cytoskeletal regulation and function. The last six C-terminal residues of the ßII isotype, a peptide of amino acid sequence EGEDEA, extend from the microtubule surface and have eluded characterization with classic X-ray crystallographic techniques. The band position of the characteristic amide I vibration of small peptide fragments is heavily dependent on the length of the peptide chain, the extent of intramolecular hydrogen bonding, and the overall polarity of the fragment. The dependence of the E residue's amide I ν(C=O) and the αCOO- terminal ν(C=O) bands on the neighboring side chain, the length of the peptide fragment, and the extent of intramolecular hydrogen bonding in the structure are investigated here via the EGEDEA peptide. The hexapeptide is broken down into fragments increasing in size from dipeptides to hexapeptides, including EG, ED, EA, EGE, EDE, DEA, EGED, EDEA, EGEDE, GEDEA, and, finally, EGEDEA, which are investigated with experimental Raman spectroscopy and density functional theory (DFT) computations to model the zwitterionic crystalline solids (in vacuo). The molecular geometries and Boltzmann sum of the simulated Raman spectra for a set of energetic minima corresponding to each peptide fragment are computed with full geometry optimizations and corresponding harmonic vibrational frequency computations at the B3LYP/6-311++G(2df,2pd) level of theory. In absence of the crystal structure, geometry sampling is performed to approximate solid phase behavior. Natural bond order (NBO) analyses are performed on each energetic minimum to quantify the magnitude of the intramolecular hydrogen bonds. The extent of the intramolecular charge transfer is dependent on the overall polarity of the fragment considered, with larger and more polar fragments exhibiting the greatest extent of intramolecular charge transfer. A steady blue shift arises when considering the amide I band position moving linearly from ED to EDE to EDEA to GEDEA and, finally, to EGEDEA. However, little variation is observed in the αCOO- ν(C=O) band position in this family of fragments.


Assuntos
Amidas/química , Teoria da Densidade Funcional , Ácido Glutâmico/química , Fragmentos de Peptídeos/química , Análise Espectral Raman , Simulação por Computador , Conformação Molecular , Estrutura Secundária de Proteína , Termodinâmica , Vibração
7.
Cytoskeleton (Hoboken) ; 78(3): 111-125, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34051127

RESUMO

Kinesins and microtubule associated proteins (MAPs) are critical to sustain life, facilitating cargo transport, cell division, and motility. To interrogate the mechanistic underpinnings of their function, these microtubule-based motors and proteins have been studied extensively at the single molecule level. However, a long-standing issue in the single molecule biophysics field has been how to investigate motors and associated proteins within a physiologically relevant environment in vitro. While the one motor/one filament orientation of a traditional optical trapping assay has revolutionized our knowledge of motor protein mechanics, this reductionist geometry does not reflect the structural hierarchy in which many motors work within the cellular environment. Here, we review approaches that combine the precision of optical tweezers with reconstituted ensemble systems of microtubules, MAPs, and kinesins to understand how each of these unique elements work together to perform large scale cellular tasks, such as but not limited to building the mitotic spindle. Not only did these studies develop novel techniques for investigating motor proteins in vitro, but they also illuminate ensemble filament and motor synergy that helps bridge the mechanistic knowledge gap between previous single molecule and cell level studies.


Assuntos
Cinesinas , Pinças Ópticas , Dineínas , Microtúbulos , Fuso Acromático
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118895, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32919160

RESUMO

Raman spectral characterization of the ß-TUBB2A E-hook hexapeptide, EGEDEA, is determined through experimental analysis combined with full geometry optimizations and corresponding harmonic vibrational frequency computations employing DFT methods. The hexapeptide is first broken down into di- and tetrapeptide fragments which are analyzed both quantum chemically and experimentally, and then combined to achieve an energetic minimum of the large EGEDEA hexapeptide. The Raman spectral characterization of EGEDEA band positions are then verified via the literature and comparison to the small fragment's similarly located band positions. The approach employed provides further evidence for the use of fragments as a helpful tool in characterization of the vibrational band positions of large peptides. STATEMENT OF SIGNIFICANCE: To investigate ß-TUBB2A E-hook hexapeptide, a unique approach is employed whereby the hexapeptide is broken into fragments, EG, ED, EA, EGED, and EDEA and analyzed via experimental Raman spectroscopy of the crystalline solids. The experimentally observed vibrational band positions are compared to those computed using and scaled from DFT methods and Pople's 6-311+G(2df,2pd) basis set. The reported vibrational band positions are also confirmed by previously reported bands of similar peptides in the literature. This methodology facilitates differentiation between the behaviors of various side chains and their influence on the structure of the hexapeptide, providing insight into not only the nature of the peptide but also defining regions for potential protein and cytoplasmic interactions, without requiring excessive computing resources or overly-sensitive experimental methods.


Assuntos
Teoria Quântica , Tubulina (Proteína) , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Vibração
9.
Elife ; 82019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31084716

RESUMO

Kinesin force generation involves ATP-induced docking of the neck linker (NL) along the motor core. However, the roles of the proposed steps of NL docking, cover-neck bundle (CNB) and asparagine latch (N-latch) formation, during force generation are unclear. Furthermore, the necessity of NL docking for transport of membrane-bound cargo in cells has not been tested. We generated kinesin-1 motors impaired in CNB and/or N-latch formation based on molecular dynamics simulations. The mutant motors displayed reduced force output and inability to stall in optical trap assays but exhibited increased speeds, run lengths, and landing rates under unloaded conditions. NL docking thus enhances force production but at a cost to speed and processivity. In cells, teams of mutant motors were hindered in their ability to drive transport of Golgi elements (high-load cargo) but not peroxisomes (low-load cargo). These results demonstrate that the NL serves as a mechanical element for kinesin-1 transport under physiological conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cinesinas/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 116(13): 6152-6161, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850543

RESUMO

Kinesin motor proteins that drive intracellular transport share an overall architecture of two motor domain-containing subunits that dimerize through a coiled-coil stalk. Dimerization allows kinesins to be processive motors, taking many steps along the microtubule track before detaching. However, whether dimerization is required for intracellular transport remains unknown. Here, we address this issue using a combination of in vitro and cellular assays to directly compare dimeric motors across the kinesin-1, -2, and -3 families to their minimal monomeric forms. Surprisingly, we find that monomeric motors are able to work in teams to drive peroxisome dispersion in cells. However, peroxisome transport requires minimal force output, and we find that most monomeric motors are unable to disperse the Golgi complex, a high-load cargo. Strikingly, monomeric versions of the kinesin-2 family motors KIF3A and KIF3B are able to drive Golgi dispersion in cells, and teams of monomeric KIF3B motors can generate over 8 pN of force in an optical trap. We find that intracellular transport and force output by monomeric motors, but not dimeric motors, are significantly decreased by the addition of longer and more flexible motor-to-cargo linkers. Together, these results suggest that dimerization of kinesin motors is not required for intracellular transport; however, it enables motor-to-motor coordination and high force generation regardless of motor-to-cargo distance. Dimerization of kinesin motors is thus critical for cellular events that require an ability to generate or withstand high forces.


Assuntos
Cinesinas/metabolismo , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Dimerização , Complexo de Golgi/metabolismo , Peroxissomos/metabolismo
11.
Curr Biol ; 28(14): 2356-2362.e5, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30017484

RESUMO

A common mitotic defect observed in cancer cells that possess supernumerary (more than two) centrosomes is multipolar spindle formation [1, 2]. Such structures are resolved into a bipolar geometry by minus-end-directed motor proteins, such as cytoplasmic dynein and the kinesin-14 HSET [3-8]. HSET is also thought to antagonize plus-end-directed kinesin-5 Eg5 to balance spindle forces [4, 5, 7, 9]. However, the biomechanics of this force opposition are unclear, as HSET has previously been defined as a non-processive motor [10-16]. Here, we use optical trapping to elucidate the mechanism of force generation by HSET. We show that a single HSET motor has a processive nature with the ability to complete multiple steps while trapped along a microtubule and when unloaded can move in both directions for microns. Compared to other kinesins, HSET has a relatively weak stall force of 1.1 pN [17, 18]. Moreover, HSET's tail domain and its interaction with the E-hook of tubulin are necessary for long-range motility. In vitro polarity-marked bundle assays revealed that HSET selectively generates force in anti-parallel bundles on the order of its stall force. When combined with varied ratios of Eg5, HSET adopts Eg5's directionality while acting as an antagonizing force brake, requiring at least a 10-fold higher Eg5 concentration to surpass HSET's sliding force. These results reveal HSET's ability to change roles within the spindle from acting as an adjustable microtubule slider and force regulator to a processive motor that aids in minus end focusing.


Assuntos
Centrossomo/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Dineínas/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
12.
Curr Biol ; 27(18): 2810-2820.e6, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28918951

RESUMO

During cell division, the mitotic kinesin-5 Eg5 generates most of the force required to separate centrosomes during spindle assembly. However, Kif15, another mitotic kinesin, can replace Eg5 function, permitting mammalian cells to acquire resistance to Eg5 poisons. Unlike Eg5, the mechanism by which Kif15 generates centrosome separation forces is unknown. Here we investigated the mechanical properties and force generation capacity of Kif15 at the single-molecule level using optical tweezers. We found that the non-motor microtubule-binding tail domain interacts with the microtubule's E-hook tail with a rupture force higher than the stall force of the motor. This allows Kif15 dimers to productively and efficiently generate forces that could potentially slide microtubules apart. Using an in vitro optical trapping and fluorescence assay, we found that Kif15 slides anti-parallel microtubules apart with gradual force buildup while parallel microtubule bundles remain stationary with a small amount of antagonizing force generated. A stochastic simulation shows the essential role of Kif15's tail domain for load storage within the Kif15-microtubule system. These results suggest a mechanism for how Kif15 rescues bipolar spindle assembly.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Fenômenos Biomecânicos , Centrossomo/metabolismo , Humanos , Ligação Proteica
13.
Chemphyschem ; 15(9): 1867-71, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24668930

RESUMO

The experimental Raman spectra of three phosphorus-substituted phosphine boranes with bulky hydrocarbon substituents are presented and compared to the results of electronic structure computations by using the M06-2X method and the 6-311G(2df, 2pd) basis set. Total-energy distributions (TEDs) are calculated to describe the degree of mixing of the dative-bond stretching vibration with other simple internal coordinates. This level of theory is found to accurately reproduce the B-P stretching frequency in all three crystalline solids. The Raman spectra of five smaller B-P-containing molecules, including BH(3) PH(3), are also simulated at this level of theory and compared to previous experimental results.

14.
J Phys Chem A ; 115(24): 6426-31, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21557585

RESUMO

N-methyliminodiacetic acid (MIDA)-protected boronate esters are a new class of reagents that offer great promise in iterative Suzuki-Miyaura cross-coupling reactions. Compared to earlier reagents, MIDA esters are easily handled and are benchtop stable under air indefinitely. The success of this new species is tied to its unique molecular architecture. Compared to the simpler B-N containing molecules ammonia borane and trimethylamine borane, MIDA esters are much larger, and the sp(3) hybridized boron atom is secured by two five membered rings, making this molecular class stable for spectroscopic study. Here, we present infrared, Raman, and surface enhanced Raman (SERS) spectra of methylboronic acid MIDA ester. Comparisons of the spectroscopic results to those from electronic structure calculations suggest that the B-N stretching mode in this molecule lies in the range 560-650 cm(-1), making it among the lowest energy vibrations observed to date that can be primarily attributed to B-N stretching.


Assuntos
Ácidos Borônicos/química , Ésteres/química , Iminoácidos/química , Modelos Moleculares , Espectrofotometria Infravermelho , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA