Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nucl Med ; 65(8): 1293-1300, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960711

RESUMO

Despite the recent advances in understanding the mechanisms of olfaction, no tools are currently available to noninvasively identify loss of smell. Because of the substantial increase in patients presenting with coronavirus disease 2019-related loss of smell, the pandemic has highlighted the urgent need to develop quantitative methods. Methods: Our group investigated the use of a novel fluorescent probe named Tsp1a-IR800P as a tool to diagnose loss of smell. Tsp1a-IR800P targets sodium channel 1.7, which plays a critical role in olfaction by aiding the signal propagation to the olfactory bulb. Results: Intuitively, we have identified that conditions leading to loss of smell, including chronic inflammation and coronavirus disease 2019, correlate with the downregulation of sodium channel 1.7 expression in the olfactory epithelium, both at the transcript and at the protein levels. We demonstrated that lower Tsp1a-IR800P fluorescence emissions significantly correlate with loss of smell in live animals-thus representing a potential tool for its semiquantitative assessment. Currently available methods rely on delayed subjective behavioral studies. Conclusion: This method could aid in significantly improving preclinical and clinical studies by providing a way to objectively diagnose loss of smell and therefore aid the development of therapeutic interventions.


Assuntos
Transtornos do Olfato , Transtornos do Olfato/diagnóstico por imagem , Animais , Humanos , Imagem Óptica/métodos , Olfato , Corantes Fluorescentes/química , Camundongos , COVID-19/diagnóstico por imagem , Masculino
2.
Npj Imaging ; 2(1): 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765879

RESUMO

Macrophages are key inflammatory mediators in many pathological conditions, including cardiovascular disease (CVD) and cancer, the leading causes of morbidity and mortality worldwide. This makes macrophage burden a valuable diagnostic marker and several strategies to monitor these cells have been reported. However, such strategies are often high-priced, non-specific, invasive, and/or not quantitative. Here, we developed a positron emission tomography (PET) radiotracer based on apolipoprotein A1 (ApoA1), the main protein component of high-density lipoprotein (HDL), which has an inherent affinity for macrophages. We radiolabeled an ApoA1-mimetic peptide (mA1) with zirconium-89 (89Zr) to generate a lipoprotein-avid PET probe (89Zr-mA1). We first characterized 89Zr-mA1's affinity for lipoproteins in vitro by size exclusion chromatography. To study 89Zr-mA1's in vivo behavior and interaction with endogenous lipoproteins, we performed extensive studies in wildtype C57BL/6 and Apoe-/- hypercholesterolemic mice. Subsequently, we used in vivo PET imaging to study macrophages in melanoma and myocardial infarction using mouse models. The tracer's cell specificity was assessed by histology and mass cytometry (CyTOF). Our data show that 89Zr-mA1 associates with lipoproteins in vitro. This is in line with our in vivo experiments, in which we observed longer 89Zr-mA1 circulation times in hypercholesterolemic mice compared to C57BL/6 controls. 89Zr-mA1 displayed a tissue distribution profile similar to ApoA1 and HDL, with high kidney and liver uptake as well as substantial signal in the bone marrow and spleen. The tracer also accumulated in tumors of melanoma-bearing mice and in the ischemic myocardium of infarcted animals. In these sites, CyTOF analyses revealed that natZr-mA1 was predominantly taken up by macrophages. Our results demonstrate that 89Zr-mA1 associates with lipoproteins and hence accumulates in macrophages in vivo. 89Zr-mA1's high uptake in these cells makes it a promising radiotracer for non-invasively and quantitatively studying conditions characterized by marked changes in macrophage burden.

3.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617358

RESUMO

Surgeries and trauma result in traumatic and iatrogenic nerve damage that can result in a debilitating condition that approximately affects 189 million individuals worldwide. The risk of nerve injury during oncologic surgery is increased due to tumors displacing normal nerve location, blood turbidity, and past surgical procedures, which complicate even an experienced surgeon's ability to precisely locate vital nerves. Unfortunately, there is a glaring absence of contrast agents to assist surgeons in safeguarding vital nerves. To address this unmet clinical need, we leveraged the abundant expression of the voltage-gated sodium channel 1.7 (NaV1.7) as an intraoperative marker to access peripheral nerves in vivo, and visualized nerves for surgical guidance using a fluorescently-tagged version of a potent NaV1.7-targeted peptide, Tsp1a, derived from a Peruvian tarantula. We characterized the expression of NaV1.7 in sensory and motor peripheral nerves across mouse, primate, and human specimens and demonstrated universal expression. We synthesized and characterized a total of 10 fluorescently labeled Tsp1a-peptide conjugates to delineate nerves. We tested the ability of these peptide-conjugates to specifically accumulate in mouse nerves with a high signal-to-noise ratio in vivo. Using the best-performing candidate, Tsp1a-IR800, we performed thyroidectomies in non-human primates and demonstrated successful demarcation of the recurrent laryngeal and vagus nerves, which are commonly subjected to irreversible damage. The ability of Tsp1a to enhance nerve contrast during surgery provides opportunities to minimize nerve damage and revolutionize standards of care across various surgical specialties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA