Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Chem Biol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38806058

RESUMO

Aspartate is crucial for nucleotide synthesis, ammonia detoxification, and maintaining redox balance via the malate-aspartate-shuttle (MAS). To disentangle these multiple roles of aspartate metabolism, tools are required that measure aspartate concentrations in real time and in live cells. We introduce AspSnFR, a genetically encoded green fluorescent biosensor for intracellular aspartate, engineered through displaying and screening biosensor libraries on mammalian cells. In live cells, AspSnFR is able to precisely and quantitatively measure cytosolic aspartate concentrations and dissect its production from glutamine. Combining high-content imaging of AspSnFR with pharmacological perturbations exposes differences in metabolic vulnerabilities of aspartate levels based on nutrient availability. Further, AspSnFR facilitates tracking of aspartate export from mitochondria through SLC25A12, the MAS' key transporter. We show that SLC25A12 is a rapidly responding and direct route to couple Ca2+ signaling with mitochondrial aspartate export. This establishes SLC25A12 as a crucial link between cellular signaling, mitochondrial respiration, and metabolism.

3.
Cell Rep ; 42(9): 113056, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37651229

RESUMO

Suppression of premature termination codons (PTCs) by translational readthrough is a promising strategy to treat a wide variety of severe genetic diseases caused by nonsense mutations. Here, we present two potent readthrough promoters-NVS1.1 and NVS2.1-that restore substantial levels of functional full-length CFTR and IDUA proteins in disease models for cystic fibrosis and Hurler syndrome, respectively. In contrast to other readthrough promoters that affect stop codon decoding, the NVS compounds stimulate PTC suppression by triggering rapid proteasomal degradation of the translation termination factor eRF1. Our results show that this occurs by trapping eRF1 in the terminating ribosome, causing ribosome stalls and subsequent ribosome collisions, and activating a branch of the ribosome-associated quality control network, which involves the translational stress sensor GCN1 and the catalytic activity of the E3 ubiquitin ligases RNF14 and RNF25.


Assuntos
Fibrose Cística , Biossíntese de Proteínas , Humanos , Códon de Terminação/metabolismo , Códon sem Sentido , Ribossomos/metabolismo , Fibrose Cística/genética
4.
J Biol Chem ; 293(23): 8750-8760, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29674345

RESUMO

Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22phox enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22phox interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22phox Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases.


Assuntos
NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Heme/química , Heme/metabolismo , Humanos , Modelos Moleculares , NADPH Oxidase 4/química , NADPH Oxidases/química , Domínios Proteicos , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo
5.
Cell ; 157(2): 447-458, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24725410

RESUMO

Maintenance of a constant cell volume in response to extracellular or intracellular osmotic changes is critical for cellular homeostasis. Activation of a ubiquitous volume-regulated anion channel (VRAC) plays a key role in this process; however, its molecular identity in vertebrates remains unknown. Here, we used a cell-based fluorescence assay and performed a genome-wide RNAi screen to find components of VRAC. We identified SWELL1 (LRRC8A), a member of a four-transmembrane protein family with unknown function, as essential for hypotonicity-induced iodide influx. SWELL1 is localized to the plasma membrane, and its knockdown dramatically reduces endogenous VRAC currents and regulatory cell volume decrease in various cell types. Furthermore, point mutations in SWELL1 cause a significant change in VRAC anion selectivity, demonstrating that SWELL1 is an essential VRAC component. These findings enable further molecular characterization of the VRAC channel complex and genetic studies for understanding the function of VRAC in normal physiology and disease.


Assuntos
Tamanho Celular , Proteínas de Membrana/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Células HEK293 , Células HeLa , Humanos , Iodetos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Interferência de RNA
6.
J Biomol Screen ; 17(6): 843-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22396475

RESUMO

High-throughput screening, based on subcellular imaging, has become a powerful tool in lead discovery. Through the generation of high-quality images, not only the specific target signal can be analyzed but also phenotypic changes of the whole cell are recorded. Yet analysis strategies for the exploration of high-content screening results, in a manner that is independent from predefined control phenotypes, are largely missing. The approach presented here is based on a well-established modeling technique, self-organizing maps (SOMs), which uses multiparametric results to group treatments that create similar morphological effects. This report describes a novel visualization of the SOM clustering by using an image of the cells from each node, with the most representative cell highlighted to deploy the phenotype described by each node. The approach has the potential to identify both expected hits and novel cellular phenotypes. Moreover, different chemotypes, which cause the same phenotypic effects, are identified, thus facilitating "scaffold hopping."


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Citometria de Varredura a Laser/métodos , Animais , Células CHO , Análise por Conglomerados , Cricetinae , Cricetulus , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citometria de Varredura a Laser/instrumentação , Análise Multivariada , Fenótipo , Análise de Componente Principal
7.
Cell Physiol Biochem ; 18(1-3): 75-84, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16914892

RESUMO

The human non-gastric H,K-ATPase, ATP1AL1, belongs to the gene family of P-type ATPases. Consistent with their physiological roles in ion transport, members of this group, including the Na,KATPase and the gastric and non-gastric H,K-ATPases, are differentially polarized to either the basolateral or apical plasma membrane in epithelial cells. However, their polarized distribution is highly complex and depends on specific sorting signals or motifs which are recognized by the subcellular targeting machinery. For the gastric H,K-ATPase it has been suggested that the 4(th) transmembrane spanning domain (TM4) and its flanking regions induce conformational sorting motifs which direct the ion pump exclusively to the epithelial apical membrane. Here, we show in transfected Madin-Darby canine kidney (MDCK) cells that the related non-gastric H,KATPase, ATP1AL1, does contain similar sorting motifs in close proximity to TM4. A short extracellular loop between TM3 and TM4 is critical for this pump's apical delivery. A single point mutation in the corresponding region redirects ATP1AL1 to the basolateral membrane. In conclusion, our work provides further evidence that the cellular distribution of P-type ATPases is determined by conformational sorting motifs.


Assuntos
Membrana Celular/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Sequência de Aminoácidos , Animais , Biotinilação , Western Blotting , Linhagem Celular , Imunofluorescência , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/genética , Humanos , Microscopia Confocal , Mutação Puntual/genética , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
8.
J Cell Physiol ; 206(1): 86-94, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15965951

RESUMO

Cell migration is crucial for wound healing, immune defense, or formation of tumor metastases. In addition to the cytoskeleton, Ca2+ sensitive K+ channels (IK1) are also part of the cellular "migration machinery." We showed that Ca2+ sensitive K+ channels support the retraction of the rear part of migrating MDCK-F cells by inducing a localized shrinkage at this cell pole. So far the molecular nature and in particular the subcellular distribution of these channels in MDCK-F cells is unknown. We compared the effect of IK1 channel blockers and activators on the current of a cloned IK1 channel from MDCK-F cells (cIK1) and the migratory behavior of these cells. Using IK1 channels labeled with a HA-tag or the enhanced green fluorescent protein we studied the subcellular distribution of the canine (cIK1) and the human (hIK1) channel protein in different migrating cells. The functional impact of cIK1 channel activity at the front or rear part of MDCK-F cells was assessed with a local superfusion technique and a detailed morphometric analysis. We show that it is cIK1 whose activity is required for migration of MDCK-F cells. IK1 channels are found in the entire plasma membrane, but they are concentrated at the cell front. This is in part due to membrane ruffling at this cell pole. However, there appears to be only little cIK1 channel activity at the front of MDCK-F cells. In our view this apparent discrepancy can be explained by differential regulation of IK1 channels at the front and rear part of migrating cells.


Assuntos
Movimento Celular/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Forma Celular , Cães , Humanos , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA