Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 57(20): 12920-12933, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30239194

RESUMO

Rhenium, the third-row congener of technetium, is often used to develop the macroscopic chemistry of potential 99mTc diagnostic radiopharmaceuticals. The rhenium analogues to 99mTc-furifosmin are being developed for potential radiotherapy of multidrug-resistant tumors. Complexes of the form trans-[MIII(PR3)2(N2O2-Schiff base)]+ are of interest for the potential imaging and treatment of multidrug-resistant tumors. Reaction of the tetradentate Schiff ligand 4,4'-[(1 E,1' E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)]bis(2,2,5,5-tetramethyl-2,5-dihydrofuran-3-ol) (tmf2enH2) with the M(V) starting materials ( nBu4N)[TcOCl4] and ( nBu4N)[ReOCl4] gave the monomeric products trans-[TcOCl(tmf2en)] and trans-[ReOCl(tmf2en)], respectively. Reduction of in situ formed trans-[ReOCl(tmf2en)] by various tertiary phosphines yielded disubstitued Re(III) products of the general type trans-[ReIII(PR3)2(tmf2en)]+. The rhenium(III) compounds were found to be water-soluble and stable in aqueous solution. Reversible ReIII/ReIV and ReIII/ReII redox processes were observed at about 0.8-0.9 and -0.65 to -0.8 V, respectively, for each of the rhenium(III) species. Reaction of in situ formed trans-TcOCl(tmf2en) with triethylphosphine yielded the reduced, disubstituted trans-[Tc(PEt3)2(tmf2en)]PF6. A reversible TcIII/TcII redox couple was observed for the technetium(III) species, about 200 mV less negative than their rhenium(III) analogues, in addition to an irreversible TcIII/TcIV process. All compounds were characterized using conventional spectroscopic techniques, single-crystal X-ray crystallography, and cyclic voltammetry.

2.
Inorg Chem ; 56(21): 13214-13227, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28994595

RESUMO

Technetium-99 (99Tc) is important to the nuclear fuel cycle as a long-lived radionuclide produced in ∼6% fission yield from 235U or 239Pu. In its most common chemical form, namely, pertechnetate (99TcO4-), it is environmentally mobile. In situ hydrogen sulfide reduction of pertechnetate has been proposed as a potential method to immobilize environmental 99TcO4- that has entered the environment. Reactions of 99TcO4- with sulfide in solution result in the precipitation of Tc2S7 except when olefinic acids, specifically fumaric or maleic acid, are present; a water-soluble 99Tc species forms. NMR (1H, 13C, and 2D methods) and X-ray absorption spectroscopy [XAS; near-edge (XANES) and extended fine structure (EXAFS)] studies indicate that sulfide adds across the olefinic bond to generate mercaptosuccinic acid (H3MSA) and/or dimercaptosuccinic acid (H4DMSA), which then chelate(s) the 99Tc to form [99TcO(MSA)2]3-, [99TcO(DMSA)2]5-, or potentially [99TcO(MSA)(DMSA)]4-. 2D NMR methods allowed identification of the products by comparison to 99Tc and nonradioactive rhenium standards. The rhenium standards allowed further identification by electrospray ionization mass spectrometry. 99TcO4- is essential to the reaction because no sulfide addition occurs in its absence, as determined by NMR. Computational studies were performed to investigate the structures and stabilities of the potential products. Because olefinic acid is a component of the naturally occurring humic and fulvic acids found in soils and groundwater, the viability of in situ hydrogen sulfide reduction of environmental 99TcO4- as an immobilization method is evaluated.

3.
Dalton Trans ; 42(32): 11614-25, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23824208

RESUMO

Reaction of (Bu4N)[ReOCl4] with the tetradentate Schiff base ligand α,α'-[(1,1-dimethylethylene)dinitrilo]di-o-cresol (sal2ibnH2) yields cis-[Re(V)OCl(sal2ibn)], which quickly forms trans-[µ-O(Re(V)O(sal2ibn))2] in solution. The dinuclear complex can also be isolated by the addition of base (Et3N) to the reaction mixture. Conversely, the mononuclear complex can be trapped as cis-[Re(V)O(NCS)(sal2ibn)] by addition of (Bu4N)SCN to the reaction mixture. Reduction of cis-[Re(V)O(NCS)sal2ibn] with triphenylphosphine gives the rare trans-[Re(III)(NCS)(PPh3)(sal2ibn)] and unique µ-oxo Re(IV) dimer trans-[µ-O(Re(IV)(NCS)(sal2ibn))2]. All of the complexes were characterized by (1)H and (13)C NMR, FT-IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), cyclic voltammetry and single crystal X-ray diffraction.


Assuntos
Óxidos de Nitrogênio/química , Compostos Organometálicos/química , Rênio/química , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Bases de Schiff/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA