RESUMO
Commercial dietary supplements are marketed as a panacea for the morbidly obese seeking sustainable weight-loss. Unfortunately, many claims cited by supplements are unsupported and inadequately regulated. Most concerning, however, are the associated harmful side effects, often unrecognized by consumers. Garcinia cambogia extract and Garcinia cambogia containing products are some of the most popular dietary supplements currently marketed for weight loss. Here, we report the first known case of fulminant hepatic failure associated with this dietary supplement. One active ingredient in this supplement is hydroxycitric acid, an active ingredient also found in weight-loss supplements banned by the Food and Drug Administration in 2009 for hepatotoxicity. Heightened awareness of the dangers of dietary supplements such as Garcinia cambogia is imperative to prevent hepatoxicity and potential fulminant hepatic failure in additional patients.
Assuntos
Fármacos Antiobesidade/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Citratos/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Garcinia cambogia , Falência Hepática Aguda/induzido quimicamente , Transplante de Fígado , Extratos Vegetais/efeitos adversos , Adulto , Doença Hepática Induzida por Substâncias e Drogas/cirurgia , Humanos , Falência Hepática Aguda/cirurgia , MasculinoRESUMO
In the last 30 years, operative, technical and medical advances have made liver transplantation (LT) a life-saving therapy that is used worldwide today. Global industrialization has been a contributor to morbid obesity and this has brought about the metabolic syndrome along with many downstream complications of such. Non-alcoholic steatohepatitis (NASH) has become a recognized hepatic manifestation of the metabolic syndrome and NASH cirrhosis is predicted to be the primary indication for LT in the United States by 2025. Several case series and database reviews have begun analyzing the efficacy of weight reduction surgery in the LT recipient. These data have reasonably demonstrated that weight reduction surgery in the LT recipient is a feasible endeavor. However, several questions have been raised regarding the type of weight reduction surgery, timing of surgery in relation to LT, patient and allograft survival and post-LT maintenance of weight loss to name a few. We look forward to a time when weight reduction surgery will work to improve the technical conduct of LT, improve perioperative benchmarks such as blood transfusions, intensive care unit length of stay and help to prevent recurrence of NASH cirrhosis in the medically complicated obese patient. In the meantime, well-designed prospective clinical trials that focus on the issues highlighted will help guide us in the care of these complicated patients who will soon account for the majority of the patients in our clinics.
RESUMO
Interactions of toll-like receptors (TLRs) with nonmicrobial factors play a major role in the pathogenesis of early trauma-hemorrhagic shock (T/HS)-induced organ injury and inflammation. Thus, we tested the hypothesis that TLR4 mutant (TLR4 mut) mice would be more resistant to T/HS-induced gut injury and polymorphonuclear neutrophil (PMN) priming than their wild-type littermates and found that both were significantly reduced in the TLR4 mut mice. In addition, the in vivo and ex vivo PMN priming effect of T/HS intestinal lymph observed in the wild-type mice was abrogated in TLR4 mut mice as well the TRIF mut-deficient mice and partially attenuated in Myd88 mice, suggesting that TRIF activation played a more predominant role than MyD88 in T/HS lymph-induced PMN priming. Polymorphonuclear neutrophil depletion studies showed that T/HS lymph-induced acute lung injury was PMN dependent, because lung injury was totally abrogated in PMN-depleted animals. Because the lymph samples were sterile and devoid of endotoxin or bacterial DNA, we investigated whether the effects of T/HS lymph was related to endogenous nonmicrobial TLR4 ligands. High-mobility group box 1 protein 1, heat shock protein 70, heat shock protein 27, and hyaluronic acid all have been implicated in ischemia-reperfusion-induced tissue injury. None of these "danger" proteins appeared to be involved, because their levels were similar between the sham and shock lymph samples. In conclusion, TLR4 activation is important in T/HS-induced gut injury and in T/HS lymph-induced PMN priming and lung injury. However, the T/HS-associated effects of TLR4 on gut barrier dysfunction can be uncoupled from the T/HS lymph-associated effects of TLR4 on PMN priming.
Assuntos
Enteropatias/etiologia , Ativação de Neutrófilo/imunologia , Choque Hemorrágico/complicações , Receptor 4 Toll-Like/imunologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Animais , Enteropatias/imunologia , Enteropatias/fisiopatologia , Mucosa Intestinal/metabolismo , Ligantes , Linfa/imunologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Permeabilidade , Ratos , Explosão Respiratória/imunologia , Choque Hemorrágico/imunologia , Choque Hemorrágico/fisiopatologia , Transdução de Sinais/fisiologia , Suínos , Porco Miniatura , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Ferimentos e Lesões/complicaçõesRESUMO
BACKGROUND: We tested the hypothesis that testosterone depletion or blockade in male rats protects against trauma hemorrhagic shock-induced distant organ injury by limiting gut injury and subsequent production of biologically active mesenteric lymph. METHODS: Male, castrated male, or flutamide-treated rats (25 mg/kg subcutaneously after resuscitation) were subjected to a laparotomy (trauma), mesenteric lymph duct cannulation, and 90 minutes of shock (35 mm Hg) or trauma sham-shock. Mesenteric lymph was collected preshock, during shock, and postshock. Gut injury was determined at 6 hours postshock using ex vivo ileal permeability with fluorescein dextran. Postshock mesenteric lymph was assayed for biological activity in vivo by injection into mice and measuring lung permeability, neutrophil activation, and red blood cell deformability. In vitro neutrophil priming capacity of the lymph was also tested. RESULTS: Castrated and flutamide-treated male rats were significantly protected against trauma hemorrhagic shock (T/HS)-induced gut injury when compared with hormonally intact males. Postshock mesenteric lymph from male rats had a higher capacity to induce lung injury, Neutrophil (PMN) activation, and loss of red blood cell deformability when injected into naïve mice when compared with castrated and flutamide-treated males. The increase in gut injury after T/HS in males directly correlated with the in vitro biological activity of mesenteric lymph to prime neutrophils for an increased respiratory burst. CONCLUSIONS: After T/HS, gut protective effects can be observed in males after testosterone blockade or depletion. This reduced gut injury contributes to decreased biological activity of mesenteric lymph leading to attenuated systemic inflammation and distant organ injury.
Assuntos
Trato Gastrointestinal/fisiopatologia , Lesão Pulmonar/fisiopatologia , Linfa/metabolismo , Choque Hemorrágico/fisiopatologia , Testosterona/deficiência , Animais , Castração/métodos , Modelos Animais de Doenças , Flutamida/farmacologia , Trato Gastrointestinal/metabolismo , Lesão Pulmonar/metabolismo , Linfa/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Masculino , Ativação de Neutrófilo/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Valores de Referência , Índice de Gravidade de Doença , Circulação Esplâncnica/fisiologia , Taxa de Sobrevida , Testosterona/metabolismoRESUMO
BACKGROUND: Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Since Toll-like receptors (TLR) act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R) injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS) mediate gut-induced lung injury via TLR4 activation. METHODS/PRINCIPAL FINDINGS: The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT) mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD) lung permeability and myeloperoxidase (MPO) levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation.
Assuntos
Lesão Pulmonar/etiologia , Linfonodos/metabolismo , Choque Hemorrágico/complicações , Receptor 4 Toll-Like/metabolismo , Ferimentos e Lesões/complicações , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Pulmão/enzimologia , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais , Suínos , Porco MiniaturaRESUMO
BACKGROUND: We tested the hypothesis that females are more resistant to trauma-hemorrhagic shock (T/HS)-induced gut injury than males, and this is related to better preservation of their intestinal mucus layer, which is influenced in turn by the estrus cycle stage at the time of injury. METHODS: Male, proestrus and diestrus female rats underwent a laparotomy (trauma) and 90 minutes of shock ( approximately 35 mm Hg). At 3 hours after reperfusion, terminal ileum was harvested and stained with Carnoy's Alcian Blue for mucus assessment, hematoxylin and eosin, and periodic acid schiff for villous and goblet cell morphology and injury. Ileal permeability was measured in separate intestinal segments using the ex vivo everted gut sac technique. RESULTS: When compared with males, proestrus female rats were significantly more resistant to T/HS-induced morphologic gut injury, as reflected in both a lower incidence of villous injury (14% vs. 22%; p < 0.05) and a lesser grade of injury (1.0 vs. 2.8; p < 0.05) as well as preservation of gut barrier function (17.9 vs. 32.2; p < 0.05). This resistance to gut injury was associated with significant preservation of the mucus layer (87% vs. 62%; p < 0.05) and was influenced by the estrus cycle stage of the female rats. There was a significant inverse correlation between mucus layer coverage and the incidence (r = 0.9; p < 0.0001) and magnitude (r = 0.89; p < 0.0001) of villous injury and gut permeability (r = 0.74; p < 0.001). CONCLUSIONS: The resistance of female rats to T/HS-induced intestinal injury and dysfunction was associated with better preservation of the intestinal mucus barrier and was to some extent estrus cycle-dependent. Preservation of the mucus barrier may protect against shock-induced gut injury and subsequent distant organ injury by limiting the ability of luminal contents such as bacteria and digestive enzymes from coming into direct contact with the epithelium.