Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sports Biomech ; : 1-13, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164700

RESUMO

Running synchronised to external cueing is often implemented in both clinical and training settings, and isochronous cueing has been shown to improve running economy. However, such cueing disregards the natural stride-to-stride fluctuations present in human locomotion which is thought to reflect higher levels of adaptability. The present study aimed to investigate how alterations in the temporal structure of cueing affect stride-to-stride variability during running. We hypothesised that running using cueing with a fractal-like structure would preserve the natural stride-to-stride variability of young adults. Thirteen runners performed four 8-min trials: one uncued (UNC) trial and three cued trials presenting an isochronous (ISO), a fractal (FRC) and a random (RND) structure. Repeated measures ANOVAs were used to identify changes in the dependent variables. We have found no main effect on the cardiorespiratory parameters, whereas a significant main effect was observed in the temporal structure of stride-to-stride variability. During FRC, the participants were able to retain the fractal patterns of their natural locomotor variability observed during the UNC condition, while during the ISO and RND they exhibited more random of fluctuations (i.e., lower values of fractal scaling). Our results demonstrate that cueing based on the natural stride-to-stride fluctuations opens new avenues for training and rehabilitation.

2.
Front Physiol ; 14: 1241948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645566

RESUMO

Purpose: This study aimed to evaluate the physiological responses associated with the stroke length (SL) and stroke rate (SR) changes as swimming velocity increases during an incremental step-test. Moreover, this study also aimed to verify if SL and SR relationships toward maximal oxygen uptake (V̇O2max), gas respiratory compensation point (RCP), exchange threshold (GET), and swimming cost can be applied to the management of endurance training and control aerobic pace. Methods: A total of 19 swimmers performed the incremental test until volitional exhaustion, with each stage being designed by percentages of the 400 m (%v400) maximal front crawl velocity. V̇O2max, GET, RCP, and the respective swimming velocities (v) were examined. Also, the stroke parameters, SL, SR, the corresponding slopes (SLslope and SRslope), and the crossing point (Cp) between them were determined. Results: GET and RCP corresponded to 70.6% and 82.4% of V̇O2max (4185.3 ± 686.1 mL min-1), and V̇O2 at Cp, SLslope, and SRslope were observed at 129.7%, 75.3%, and 61.7% of V̇O2max, respectively. The swimming cost from the expected V̇O2 at vSLslope (0.85 ± 0.18 kJ m-1), vSRslope (0.77 ± 0.17 kJ m-1), and vCp (1.09 ± 0.19 kJ m-1) showed correlations with GET (r = 0.73, 0.57, and 0.59, respectively), but only the cost at vSLslope and vCp correlated to RCP (0.62 and 0.69) and V̇O2max (0.70 and 0.79). Conclusion: SL and SR exhibited a distinctive pattern for the V̇O2 response as swimming velocity increased. Furthermore, the influence of SL on GET, RCP, and V̇O2max suggests that SLslope serves as the metabolic reference of heavy exercise intensity, beyond which the stroke profile defines an exercise zone with high cost, which is recommended for an anaerobic threshold and aerobic power training. In turn, the observed difference between V̇O2 at SRslope and GET suggests that the range of velocities between SL and SR slopes ensures an economical pace, which might be recommended to develop long-term endurance. The results also highlighted that the swimming intensity paced at Cp would impose a high anaerobic demand, as it is located above the maximal aerobic velocity. Therefore, SLslope and SRslope are suitable indexes of submaximal to maximal aerobic paces, while Cp's meaning still requires further evidence.

3.
Sensors (Basel) ; 23(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420619

RESUMO

The Nordic hamstring exercise (NHE) is a very popular exercise used to improve eccentric strength and prevent injuries. The aim of this investigation was to assess the reliability of a portable dynamometer that measures maximal strength (MS) and rate of force development (RFD) during the NHE. Seventeen physically active participants (34.8 ± 4.1 years; n = 2 women and n = 15 men) participated. Measurements occurred on two different days separated by 48-72 h. Test-retest reliability was calculated for bilateral MS and RFD. No significant test-retest differences were observed in NHE (test-retest [95% CI, confidence interval]) for MS [-19.2 N (-67.8; 29.4); p = 0.42] and RFD [-70.4 N·s-1 (-178.4; 37.8); p = 0.19]. MS showed high reliability (intraclass correlation coefficient [ICC] [95% CI], =0.93 [0.80-0.97] and large within-subject correlation between test and retest [r = 0.88 (0.68; 0.95)]. RFD displayed good reliability [ICC = 0.76 (0.35; 0.91)] and moderate within-subject correlation between test and retest [r = 0.63 (0.22; 0.85)]. Bilateral MS and RFD displayed a coefficient of variation of 3.4% and 4.6%, respectively, between tests. The standard error of measurement and the minimal detectable change for MS was 44.6 arbitrary units (a.u.) and 123.6 a.u., and 104.6 a.u. and 290.0 a.u. for peak RFD. This study shows that MS and RFD can be measured for NHE using a portable dynamometer. However, not all exercises are suitable to apply to determine RFD, so caution must be taken when analyzing RFD during NHE.


Assuntos
Músculos Isquiossurais , Força Muscular , Masculino , Humanos , Feminino , Reprodutibilidade dos Testes , Exercício Físico , Terapia por Exercício , Músculo Esquelético
4.
Front Physiol ; 13: 982874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246138

RESUMO

The time sustained during exercise with oxygen uptake (V̇O2) reaching maximal rates (V̇O2peak) or near peak responses (i.e., above second ventilatory threshold [t@VT2) or 90% V̇O2peak (t@90%V̇O2peak)] is recognized as the training pace required to enhance aerobic power and exercise tolerance in the severe domain (time-limit, tLim). This study compared physiological and performance indexes during continuous and intermittent trials at maximal aerobic velocity (MAV) to analyze each exercise schedule, supporting their roles in conditioning planning. Twenty-two well-trained swimmers completed a discontinuous incremental step-test for V̇O2peak, VT2, and MAV assessments. Two other tests were performed in randomized order, to compare continuous (CT) vs. intermittent trials (IT100) at MAV until exhaustion, to determine peak oxygen uptake (Peak-V̇O2) and V̇O2 kinetics (V̇O2K). Distance and time variables were registered to determine the tLim, t@VT2, and t@90%V̇O2peak tests. Blood lactate concentration ([La-]) was analyzed, and rate of perceived exertion (RPE) was recorded. The tests were conducted using a breath-by-breath apparatus connected to a snorkel for pulmonary gas sampling, with pacing controlled by an underwater visual pacer. V̇O2peak (55.2 ± 5.6 ml·kg·min-1) was only reached in CT (100.7 ± 3.1 %V̇O2peak). In addition, high V̇O2 values were reached at IT100 (96.4 ± 4.2 %V̇O2peak). V̇O2peak was highly correlated with Peak-V̇O2 during CT (r = 0.95, p < 0.01) and IT100 (r = 0.91, p < 0.01). Compared with CT, the IT100 presented significantly higher values for tLim (1,013.6 ± 496.6 vs. 256.2 ± 60.3 s), distance (1,277.3 ± 638.1 vs. 315.9 ± 63.3 m), t@VT2 (448.1 ± 211.1 vs. 144.1 ± 78.8 s), and t@90%V̇O2peak (321.9 ± 208.7 vs. 127.5 ± 77.1 s). V̇O2K time constants (IT100: 25.9 ± 9.4 vs. CT: 26.5 ± 7.5 s) were correlated between tests (r = 0.76, p < 0.01). Between CT and IT100, tLim were not related, and RPE (8.9 ± 0.9 vs. 9.4 ± 0.8) and [La-] (7.8 ± 2.7 vs. 7.8 ± 2.8 mmol·l-1) did not differ between tests. MAV is suitable for planning swimming intensities requiring V̇O2peak rates, whatever the exercise schedule (continuous or intermittent). Therefore, the results suggest IT100 as a preferable training schedule rather than the CT for aerobic capacity training since IT100 presented a significantly higher tLim, t@VT2, and t@90%V̇O2peak (∼757, ∼304, and ∼194 s more, respectively), without differing regards to [La-] and RPE. The V̇O2K seemed not to influence tLim and times spent near V̇O2peak in both workout modes.

5.
Biology (Basel) ; 11(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36138734

RESUMO

This study aimed to compare muscle strength and power indicators according to bioimpedance spectroscopy's phase angle (PhA) values, in resistance-trained (RT) men, while exploring associations between PhA and performance. Forty-four men aged 18−45 years, engaged in RT, were allocated according to PhA tertiles. Lean soft tissue (LST) and fat mass (%FM) were assessed using dual-energy x-ray absorptiometry; dynamic muscle strength using 1 repetition maximum (1RM) of bench press (BP) and back squat (BS) and muscle power using Wingate test (WT) and countermovement jump (CMJ). For WT and CMJ, the 3rd tertile was significantly higher than the 1st tertile (p = 0.027 and p = 0.018, respectively). Regarding BP 1RM, the 3rd tertile was significantly higher than the 2nd tertile (p = 0.037). LST better explained the variability in the WT, BS and BP (p =< 0.001), while %FM better accounted for jump height in CMJ (p =< 0.001). PhA was a predictor of performance in both CMJ (p = 0.040) and BP (p = 0.012), independently of LST and %FM. Participants with higher PhA also displayed superior muscle strength of the upper limbs and greater muscle power of the lower limbs. PhA displayed significant moderate associations with performance in CMJ and BP, even after controlling for body composition. Still, LST was the most important predictor of muscle strength and power.

6.
Front Nutr ; 9: 934438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938106

RESUMO

Introduction: The effects of dietary protein on body composition and physical performance seemingly depend on the essential amino acid profile of the given protein source, although controversy exists about whether animal protein sources may possess additional anabolic properties to plant-based protein sources. Purpose: To compare the effects of a novel plant-based protein matrix and whey protein supplementation on body composition, strength, power, and endurance performance of trained futsal players. Methods: Fifty male futsal players were followed during 8 weeks of supplementation, with 40 completing the study either with plant-based protein (N = 20) or whey protein (N = 20). The following measures were assessed: bone mineral content, lean body mass, and fat mass; muscle thickness of the rectus femoris; total body water; blood glucose, hematocrit, C-reactive protein, aspartate aminotransferase, alanine aminotransferase, creatine kinase, creatinine, and estimated glomerular filtration rate; salivary cortisol; maximal strength and 1-RM testing of the back squat and bench press exercises; muscle power and countermovement jump; VO2max and maximal aerobic speed. Subjects were asked to maintain regular dietary habits and record dietary intake every 4 weeks through 3-day food records. Results: No differences in any variable were observed between groups at baseline or pre- to post-intervention. Moreover, no time*group interaction was observed in any of the studied variables, and a time effect was only observed regarding fat mass reduction. Conclusions: Supplementing with either a novel plant-based protein matrix or whey protein did not affect any of the variables assessed in high-level futsal players over 8 wks. These results suggest that whey protein does not possess any unique anabolic properties over and above those of plant-based proteins when equated to an essential amino acid profile in the population studied. Furthermore, when consuming a daily protein intake >1.6 g/kg BW.day-1, additional protein supplementation does not affect body composition or performance in trained futsal players, regardless of protein type/source.

7.
Nutrition ; 102: 111694, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810579

RESUMO

OBJECTIVES: This study aimed to test whether athlete-specific, bioelectrical, impedance-based equations to estimate fat-free mass (FFM) could be more accurate than generalized equations when testing resistance-trained exercisers. METHODS: A total of 50 resistance-trained men (age 30.9 ± 7.4 y; body mass index: 25.3 ± 2.2 kg/m2) and 20 men from the general population (age 29.9 ± 9.1 y; body mass index: 22.8 ± 2.4 kg/m2) underwent bioelectrical impedance and dual-energy x-ray absorptiometry (DXA) evaluations. FFM was derived by one bioelectrical impedance-based equation specific for athletes and three generalized equations, all developed with foot-to-hand bioimpedance technologies at a 50 kHz frequency. DXA was the reference method for the FFM assessment. RESULTS: Compared with DXA, when assessing the resistance-trained participants, the athletic-specific equation had neither mean (-0.89 kg; P = 0.789) or proportional bias (r = -0.104; P = 0.474) with a coefficient of determination equal to R2 = 0.91. In contrast, the three generalized predictive equations overestimated FFM (range, 4.11-5.37 kg; P < 0.05) with R2 ranging from 0.84 to 0.90. The athletic-specific equation underestimated FFM in the general population participants (-2.93 kg; P < 0.05). CONCLUSIONS: When assessing body composition in resistance-trained exercisers, specific equations for athletes should be preferred to generalized ones to avoid an overestimation in FFM. Furthermore, athlete-specific and generalized formulas cannot be used interchangeably, even when assessing body composition in the general population.


Assuntos
Composição Corporal , Esportes , Absorciometria de Fóton/métodos , Adulto , Índice de Massa Corporal , Impedância Elétrica , Humanos , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
8.
Artigo em Inglês | MEDLINE | ID: mdl-35627748

RESUMO

The current case study aimed to quantify within-subjects correlations between training load and well-being in elite male beach soccer players. Data were obtained over three consecutive days during the preparation camp for the FIFA Beach Soccer World Cup Russia 2021. The session rating of perceived exertion (s-RPE) and external training load metrics using global positioning system (GPS) were recorded. Eleven players reported perceived well-being (sleep quality, fatigue, muscle soreness and stress) using a Likert scale (Hooper Index) before breakfast. Within-subjects correlation coefficients between workload and well-being were calculated. Workload metrics and perceived well-being indices were significantly lower on day three than on days one and two. The Hooper Index presented a very large positive correlation with s-RPE (r = 0.86 [0.67, 0.94], 95% confidence interval, CI), exposure time (r = 0.88 [0.71, 0.95]), total distance (r = 0.83 [0.60, 0.93]), high-speed distance (r = 0.77 [0.50, 0.91]), and number of sprints (r = 0.75 [0.47, 0.90]). Sleep quality presented a moderate to large positive correlation with s-RPE (r = 0.51 [0.11, 0.77]), exposure time (r = 0.50 [0.10, 0.76]), high-speed distance (r = 0.53 [0.15, 0.78]), number of sprints (r = 0.62 [0.28, 0.83]) and total distance (r = 0.41 [0.18, 0.78]). Fatigue presented a large to very large positive correlation with s-RPE (r = 0.85 [0.66, 0.94]), exposure time (r = 0.90 [0.78, 0.96]), total distance (r = 0.86 [0.68, 0.94]), high-speed distance (r = 0.65 [0.31, 0.84]) and number of sprints (r = 0.56 [0.18, 0.79]). Muscle soreness presented a large to very large positive correlation with s-RPE (r = 0.79 [0.56, 0.91]), exposure time (r = 0.83 [0.62, 0.93]), total distance (r = 0.81 [0.59, 0.92]), high-speed distance (r = 0.75 [0.47, 0.89]) and number of sprints (r = 0.59 [0.22, 0.81]). Overall, workload presented a meaningful correlation with perceived well-being indices in elite male beach soccer players during a training camp. These findings suggest that workload metrics and perceived well-being indices can be implemented into the daily routine of an elite beach soccer team, which may assist coaches, sports scientists, and practitioners in better preparing players for beach soccer competitions.


Assuntos
Futebol , Fadiga , Sistemas de Informação Geográfica , Humanos , Masculino , Mialgia , Futebol/fisiologia , Carga de Trabalho
9.
Biology (Basel) ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453705

RESUMO

Aims: The present study aimed to assess the ability of bioelectrical impedance vector analysis (BIVA) in discriminating fitness levels in futsal players, exploring the association of body composition and bioelectrical parameters with aerobic power. Methods: Forty-eight professional futsal players (age 23.8 ± 5.3 years) were involved in a cross-sectional study during their pre-season phase. Fat mass (FM) and muscle mass were determined by dual-energy X-ray absorptiometry. VO2max was obtained by indirect calorimetry through a graded exercise test performed on a treadmill. Bioelectrical resistance (R), reactance (Xc), and phase angle (PhA) were directly measured using a foot-to-hand bioimpedance technology at a 50 kHz frequency. Bioelectric R and Xc were standardized for the participants' height and used to plot the bioimpedance vector in the R-Xc graph according to the BIVA approach. Results: The participants divided into groups of VO2max limited by tertiles showed significant differences in mean vector position in the R-Xc graph (p < 0.001), where a higher VO2max resulted in a longer vector and upper positioning. FM, muscle mass, and PhA differed (p < 0.01) among the athletes grouped by tertiles of VO2max, where athletes with a greater aerobic power showed a lower percentage of FM and a higher percentage of muscle mass and PhA. FM and PhA were associated with VO2max (FM: r = −0.658, p < 0.001; PhA: r = 0.493, p < 0.001). These relationships remained significant after adjusting for age and body mass (FM: ß = −0.335, p = 0.046; PhA: ß = 0.351, p = 0.003). Conclusions: Bioelectrical impedance vectors positioned on the lower pole of the R-Xc graph identified futsal players with a lower VO2max, while longer vectors corresponded to a greater aerobic power. Additionally, PhA, that describes the vector direction, was positively associated with VO2max, while a higher FM negatively affected VO2max in the futsal players. BIVA and PhA evaluation may represent a valid support for screening the aerobic fitness level in professional futsal players, when more sophisticated assessment methods are not available.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35055684

RESUMO

The present study sought to investigate if faster upper body oxygen uptake (VO2) and hemoglobin/myoglobin deoxygenation ([HHb]) kinetics during heavy intensity exercise were associated with a greater upper body repeated-sprint ability (RSA) performance in a group of judokas and in a group of individuals of heterogenous fitness level. Eight judokas (JT) and seven untrained healthy participants (UT) completed an incremental step test, two heavy intensity square-wave transitions and an upper body RSA test consisting of four 15 s sprints, with 45 s rest, from which the experimental data were obtained. In the JT group, VO2 kinetics, [HHb] kinetics and the parameters determined in the incremental test were not associated with RSA. However, when the two groups were combined, the amplitude of the primary phase VO2 and [HHb] were positively associated with the accumulated work in the four sprints (ΣWork). Additionally, maximal aerobic power (MAP), peak VO2 and the first ventilatory threshold (VT1) showed a positive correlation with ΣWork and an inverse correlation with the decrease in peak power output (Dec-PPO) between the first and fourth sprints. Faster VO2 and [HHb] kinetics do not seem to be associated with an increased upper body RSA in JT. However, other variables of aerobic fitness seem to be associated with an increased upper body RSA performance in a group of individuals with heterogeneous fitness level.


Assuntos
Exercício Físico , Consumo de Oxigênio , Exercício Físico/fisiologia , Teste de Esforço , Humanos , Cinética , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia
11.
Front Physiol ; 12: 796886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970159

RESUMO

This study assessed the energy cost in swimming (C) during short and middle distances to analyze the sex-specific responses of C during supramaximal velocity and whether body composition account to the expected differences. Twenty-six swimmers (13 men and 13 women: 16.7 ± 1.9 vs. 15.5 ± 2.8 years old and 70.8 ± 10.6 vs. 55.9 ± 7.0 kg of weight) performed maximal front crawl swimming trials in 50, 100, and 200 m. The oxygen uptake ( V ˙ O2) was analyzed along with the tests (and post-exercise) through a portable gas analyser connected to a respiratory snorkel. Blood samples were collected before and after exercise (at the 1st, 3rd, 5th, and 7th min) to determine blood lactate concentration [La-]. The lean mass of the trunk (LM Trunk ), upper limb (LM UL ), and lower limb (LM LL ) was assessed using dual X-ray energy absorptiometry. Anaerobic energy demand was calculated from the phosphagen and glycolytic components, with the first corresponding to the fast component of the V ˙ O2 bi-exponential recovery phase and the second from the 2.72 ml × kg-1 equivalent for each 1.0 mmol × L-1 [La-] variation above the baseline value. The aerobic demand was obtained from the integral value of the V ˙ O2 vs. swimming time curve. The C was estimated by the rate between total energy releasing (in Joules) and swimming velocity. The sex effect on C for each swimming trial was verified by the two-way ANOVA (Bonferroni post hoc test) and the relationships between LM Trunk , LM UL , and LM LL to C were tested by Pearson coefficient. The C was higher for men than women in 50 (1.8 ± 0.3 vs. 1.3 ± 0.3 kJ × m-1), 100 (1.4 ± 0.1 vs. 1.0 ± 0.2 kJ × m-1), and 200 m (1.0 ± 0.2 vs. 0.8 ± 0.1 kJ × m-1) with p < 0.01 for all comparisons. In addition, C differed between distances for each sex (p < 0.01). The regional LM Trunk (26.5 ± 3.6 vs. 20.1 ± 2.6 kg), LM UL (6.8 ± 1.0 vs. 4.3 ± 0.8 kg), and LM LL (20.4 ± 2.6 vs. 13.6 ± 2.5 kg) for men vs. women were significantly correlated to C in 50 (R 2 adj = 0.73), 100 (R 2 adj = 0.61), and 200 m (R 2 adj = 0.60, p < 0.01). Therefore, the increase in C with distance is higher for men than women and is determined by the lean mass in trunk and upper and lower limbs independent of the differences in body composition between sexes.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33430166

RESUMO

We aimed to compare the velocity, physiological responses, and stroke mechanics between the lactate parameters determined in an incremental step test (IST) and maximal lactate steady state (MLSS). Fourteen well-trained male swimmers (16.8 ± 2.8 years) were timed for 400 m and 200 m (T200). Afterwards, a 7 × 200-m front-crawl IST was performed. Swimming velocity, heart rate (HR), blood lactate concentration (BLC), stroke mechanics, and rate of perceived exertion (RPE) were measured throughout the IST and in the 30-min continuous test (CT) bouts for MLSS determination. Swimming velocities at lactate threshold determined with log-log methodology (1.34 ± 0.06 m∙s-1) and Dmax methodology (1.40 ± 0.06 m∙s-1); and also, the velocity at BLC of 4 mmol∙L-1 (1.36 ± 0.07) were not significantly different from MLSSv, however, Bland-Altman analysis showed wide limits of agreement and the concordance correlation coefficient showed poor strength of agreement between the aforementioned parameters which precludes their interchangeable use. Stroke mechanics, HR, RPE, and BLC in MLSSv were not significantly different from the fourth repetition of IST (85% of T200), which by itself can provide useful support to daily practice of well-trained swimmers. Nevertheless, the determination of MLSSv, based on a CT, remains more accurate for exercise evaluation and prescription.


Assuntos
Teste de Esforço , Natação , Frequência Cardíaca , Ácido Láctico , Masculino , Fenômenos Físicos
13.
Artigo em Inglês | MEDLINE | ID: mdl-32640533

RESUMO

BACKGROUND AND AIM: Monitoring bioelectric phase angle (PhA) provides important information on the health and the condition of the athlete. Together with the vector length, PhA constitutes the bioimpedance vector analysis (BIVA) patterns, and their joint interpretation exceeds the limits of the evaluation of the PhA alone. The present investigation aimed to monitor changes in the BIVA patterns during a training macrocycle in swimmers, trying to ascertain if these parameters are sensitive to training load changes across a 13-week training period. METHODS: Twelve national and international level swimmers (four females; eight males; 20.9 ± 1.9 years; with a competitive swimming background of 11.3 ± 1.8 years; undertaking 16-20 h of pool training and 4-5 h of dry-land training per week and 822.0 ± 59.0 International Swimming Federation (FINA) points) were evaluated for resistance (R) and reactance (Xc) using a single frequency phase sensitive bioimpedance device at the beginning of the macrocycle (M1), just before the beginning of the taper period (M2), and just before the main competition of the macrocycle (M3). At the three-time assessment points, swimmers also performed a 50 m all-out first stroke sprint with track start (T50 m) while time was recorded. RESULTS: The results of the Hotelling T2 test showed a significant vector displacement due to simultaneous R and Xc changes (p < 0.001), where shifting from top to bottom along the major axis of the R-Xc graph from M1 to M2 was observed. From M2 to M3, a vector displacement up and left along the minor axis of the tolerance ellipses resulted in an increase in PhA (p < 0.01). The results suggest a gain in fluid with a decrease in cellular density from M1 to M2 due to decrements in R and Xc. Nevertheless, the reduced training load characterizing taper seemed to allow for an increase in PhA and, most importantly, an increase of Xc, thus demonstrating improved cellular health and physical condition, which was concomitant with a significant increase in the T50 m performance (p < 0.01). CONCLUSIONS: PhA, obtained by bioelectrical R and Xc, can be useful in monitoring the condition of swimmers preparing for competition. Monitoring BIVA patterns allows for an ecological approach to the swimmers' health and condition assessment without resorting to equations to predict the related body composition variables.


Assuntos
Composição Corporal , Natação , Animais , Atletas , Vetores de Doenças , Impedância Elétrica , Feminino , Humanos , Masculino , Adulto Jovem
14.
Eur J Appl Physiol ; 120(5): 1097-1109, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32212025

RESUMO

PURPOSE: This study aims to analyze swimmers' oxygen uptake kinetics ([Formula: see text]K) and bioenergetic profiles in 50, 100, and 200 m simulated swimming events and determine which physiological variables relate with performance. METHODS: Twenty-eight well-trained swimmers completed an incremental test for maximal oxygen uptake (Peak-[Formula: see text]) and maximal aerobic velocity (MAV) assessment. Maximal trials (MT) of 50, 100, and 200-m in front crawl swimming were performed for [Formula: see text]K and bioenergetic profile. [Formula: see text]K parameters were calculated through monoexponential modeling and by a new growth rate method. The recovery phase was used along with the blood lactate concentration for bioenergetics profiling. RESULTS: Peak-[Formula: see text] (57.47 ± 5.7 ml kg-1 min-1 for male and 53.53 ± 4.21 ml kg-1 min-1 for female) did not differ from [Formula: see text]peak attained at the 200-MT for female and at the 100 and 200-MT for male. From the 50-MT to 100-MT and to the 200-MT the [Formula: see text]K presented slower time constants (8.6 ± 2.3 s, 11.5 ± 2.4 s and 16.7 ± 5.5 s, respectively), the aerobic contribution increased (~ 34%, 54% and 71%, respectively) and the anaerobic decreased (~ 66%, 46% and 29%, respectively), presenting a cross-over in the 100-MT. Both energy systems, MAV, Peak-[Formula: see text], and [Formula: see text] peak of the MT's were correlated with swimming performance. DISCUSSION: The aerobic energy contribution is an important factor for performance in 50, 100, and 200-m, regardless of the time taken to adjust the absolute oxidative response, when considering the effect on a mixed-group regarding sex. [Formula: see text]K speeding could be explained by a faster initial pacing strategy used in the shorter distances, that contributed for a more rapid increase of the oxidative contribution to the energy turnover.


Assuntos
Metabolismo Energético/fisiologia , Consumo de Oxigênio , Oxigênio/metabolismo , Desempenho Psicomotor/fisiologia , Natação/fisiologia , Adolescente , Feminino , Humanos , Cinética , Ácido Láctico/sangue , Masculino
15.
J Vis Exp ; (155)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32065135

RESUMO

Incremental exercise testing is the standard means of assessing cardiorespiratory capacity of endurance athletes. While the maximal rate of oxygen consumption is typically used as the criterion measurement in this regard, two metabolic breakpoints that reflect changes in the dynamics of lactate production/consumption as the work rate is increased are perhaps more relevant for endurance athletes from a functional standpoint. Exercise economy, which represents the rate of oxygen consumption relative to performance of submaximal work, is also an important parameter to measure for endurance-athlete assessment. Ramp incremental tests comprising a gradual but rapid increase in work rate until the limit of exercise tolerance is reached are useful for determining these parameters. This type of test is typically performed on a cycle ergometer or treadmill because there is a need for precision with respect to work-rate incrementation. However, athletes should be tested while performing the mode of exercise required for their sport. Consequently, swimmers are typically assessed during free-swimming incremental tests where such precision is difficult to achieve. We have recently suggested that stationary swimming against a load that is progressively increased (incremental tethered swimming) can serve as a "swim ergometer" by allowing sufficient precision to accommodate a gradual but rapid loading pattern that reveals the aforementioned metabolic breakpoints and exercise economy. However, the degree to which the peak rate of oxygen consumption achieved during such a protocol approximates the maximal rate that is measured during free swimming remains to be determined. In the present article, we explain how this rapidly incremented tethered-swimming protocol can be employed to assess the cardiorespiratory capacity of a swimmer. Specifically, we explain how assessment of a short-distance competitive swimmer using this protocol revealed that his rate of oxygen uptake was 30.3 and 34.8 mL∙min-1∙kg-1BM at his gas-exchange threshold and respiratory compensation point, respectively.


Assuntos
Teste de Esforço/métodos , Frequência Cardíaca/fisiologia , Testes de Função Respiratória/métodos , Natação/psicologia , Adulto , Feminino , Humanos , Masculino
16.
J Sports Sci ; 37(17): 2037-2044, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31079555

RESUMO

Leucine metabolites may reduce training-induced inflammation; however, there is scant evidence for this assertion. We conducted a double-blind randomized controlled pragmatic trial where 40 male participants were allocated into 4 groups: α-hydroxyisocaproic acid group ([α-HICA], n = 10, Fat-free mass [FFM] = 62.0 ± 7.1 kg), ß-hydroxy-ß-methylbutyrate free acid group ([HMB-FA], n = 11, FFM = 62.7 ± 10.5 kg), calcium ß-hydroxy-ß-methylbutyrate group ([HMB-Ca], n = 9, FFM = 65.6 ± 10.1 kg) or placebo group ([PLA]; n = 10, FFM = 64.2 ± 5.7 kg). An 8-week whole-body resistance training routine (3 training sessions per week) was employed to induce gains in skeletal-muscle thickness. Skeletal muscle thickness (MT), one repetition maximum (1RM), interleukin-6 (IL-6), high-sensitivity C-reactive protein (hsCRP) and tumour necrosis factor alpha (TNF-α) were assessed at baseline and at the end of weeks 4 and 8. Time-dependent increases were detected from baseline to week 8 for MT (vastus lateralis: p = 0.009; rectus femoris: p = 0.018), 1RM (back squat: α-HICA, 18.5% ± 18.9%; HMB-FA, 23.2% ± 16%; HMB-Ca, 10.5% ± 13.8%; PLA, 19.7% ± 9% and bench press: α-HICA, 13.8% ± 19.1%; HMB-FA, 15.5% ± 9.3%; HMB-Ca, 10% ± 10.4%; PLA, 14.4 ± 11.3%, both p < 0.001), IL-6, hsCRP (both p < 0.001) and TNF-α (p = 0.045). No differences were found between groups at any time point. No leucine metabolite attenuated inflammation during training. Additionally, backwards elimination regressions showed that no circulating inflammatory marker consistently shared variance with the change in any outcome. Using leucine metabolites to modulate inflammation cannot be recommended from the results obtained herein. Furthermore, increases in inflammatory markers, from training, do not correlate with any outcome variable and are likely the result of training adaptations.


Assuntos
Caproatos/administração & dosagem , Inflamação/sangue , Leucina/metabolismo , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Valeratos/administração & dosagem , Adulto , Biomarcadores/sangue , Composição Corporal , Proteína C-Reativa/análise , Cálcio , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Interleucina-6/sangue , Masculino , Força Muscular , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
17.
Front Physiol ; 10: 407, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031637

RESUMO

Blood flow restrictive (BFR) exercise elicits a localized hypoxic environment compatible with greater metabolic stress. We intended to compare the acute changes in muscle microvascular oxygenation following low-intensity knee extension exercise, combined with different levels of BFR. Thirteen active young men (age: 23.8 ± 5.4 years) were tested for unilateral knee extension exercise (30 + 15 + 15 + 15 reps at 20% one repetition maximum) on four different conditions: no-BFR (NOBFR), 40, 60, and 80% of arterial occlusion pressure (AOP). Deoxyhemoglobin+myoglobin concentration Deoxy[Hb+Mb], total hemoglobin [T(H+Mb)] and tissue oxygen saturation [TOI] were measured on the vastus lateralis muscle using near-infrared spectroscopy (NIMO, Nirox srl, Brescia, Italy). The magnitude of change in Deoxy[Hb+Mb]during exercise was similar between 60 and 80% AOP. Overall, compared to that seen during 60 and 80% AOP, NOBFR as well as 40% AOP resulted in a lower magnitude of change in Deoxy[Hb+Mb] (p < 0.05). While the oxygen extraction decreased during each inter-set resting interval in NOBFR and 40% AOP, this was not the case for 60 or 80% AOP. Additionally, TOI values obtained during recovery from each set of exercise were similarly affected by all conditions. Finally, our data also show that, when performed at higher restrictive values (60 and 80%), BFR exercise increases total Deoxy[Hb+Mb] extraction (p < 0.05). Taken together, we provide evidence that BFR is effective for increasing deoxygenation and reducing tissue oxygenation during low-intensity exercise. We also showed that when using low loads, a relative pressure above 40% of the AOP at rest is required to elicit changes in microvascular oxygenation compared with the same exercise with unrestricted conditions.

18.
Eur J Sport Sci ; 19(6): 802-810, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30588860

RESUMO

ß-hydroxy-ß-methylbutyrate (calcium: HMB-Ca and free acid: HMB-FA) and α-hydroxyisocaproic acid (α-HICA) are leucine metabolites that have been proposed to improve body composition and strength when combined with resistance exercise training (RET). In this double-blind randomized controlled pragmatic trial, we evaluated the effects of off-the-shelf supplements: α-HICA, HMB-FA and HMB-Ca, on RET-induced changes in body composition and performance. Forty men were blocked randomized to receive α-HICA (n = 10, fat-free mass [FFM] = 62.0 ± 7.1 kg), HMB-FA (n = 11, FFM = 62.7 ± 10.5 kg), HMB-Ca (n = 9, FFM = 65.6 ± 10.1 kg) or placebo (PLA; n = 10, FFM = 64.2 ± 5.7 kg). The training protocol consisted of a whole-body resistance training routine, thrice weekly for 8 weeks. Body composition was assessed by dual-energy x-ray absorptiometry (DXA) and total body water (TBW) by whole-body bioimpedance spectroscopy (BIS), both at baseline and at the end of weeks 4 and 8. Time-dependent changes were observed for increase in trunk FFM (p < 0.05). No statistically significant between-group or group-by-time interactions were observed. Supplementation with HMB (FA and Ca) or α-HICA failed to enhance body composition to a greater extent than placebo. We do not recommend these leucine metabolites for improving body composition changes with RET in young adult resistance trained men.


Assuntos
Composição Corporal , Caproatos/administração & dosagem , Suplementos Nutricionais , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Valeratos/administração & dosagem , Absorciometria de Fóton , Adulto , Espectroscopia Dielétrica , Método Duplo-Cego , Humanos , Masculino , Adulto Jovem
19.
Med Sci Sports Exerc ; 51(1): 56-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102677

RESUMO

Leucine metabolites, α-hydroxyisocaproic acid (α-HICA) and ß-hydroxy-ß-methylbutyrate (calcium, HMB-Ca and free acid, HMB-FA), have been proposed to augment resistance training-induced changes in body composition and performance. PURPOSE: We aimed to conduct a double-blind randomized controlled pragmatic trial to evaluate the effects of off-the-shelf leucine metabolite supplements of α-HICA, HMB-FA, and HMB-Ca on resistance training-induced changes in muscle thickness and performance. METHODS: Forty men were randomly assigned to receive α-HICA (n = 10, fat-free mass [FFM] = 62.0 ± 7.1 kg), HMB-FA (n = 11, FFM = 62.7 ± 10.5 kg), HMB-Ca (n = 9, FFM = 65.6 ± 10.1 kg), or placebo (PLA; n = 10, FFM = 64.2 ± 5.7 kg). The training program consisted of whole body thrice weekly resistance training for 8 wk (seven exercises per session, three to four sets per session, at 70%-80% one repetition maximum). Skeletal muscle thickness by ultrasound, performance measures, and blood measures (creatine kinase, insulin-like growth factor 1, growth hormone, cortisol, and total testosterone) were evaluated at baseline and at the end of weeks 4 and 8. RESULTS: Time-dependent changes were observed for muscle thickness (P < 0.001), one repetition maximum bench press and squat (P < 0.001), Wingate peak power (P = 0.02), countermovement jump height (P = 0.03), power (P = 0.006), creatine kinase, insulin-like growth factor-1, growth hormone, and cortisol (all P < 0.001). No significant between-group or time-group interactions were observed. CONCLUSIONS: No leucine metabolite resulted in any ergogenic effects on any outcome variable. Supplementation with leucine metabolites-α-HICA, HMB-FA, or HMB-Ca-is not a supplementation strategy that improves muscle growth and strength development in young adult men.


Assuntos
Caproatos/administração & dosagem , Suplementos Nutricionais , Força Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Substâncias para Melhoria do Desempenho/administração & dosagem , Treinamento Resistido , Valeratos/administração & dosagem , Adolescente , Adulto , Desempenho Atlético/fisiologia , Biomarcadores/sangue , Composição Corporal , Creatina Quinase/sangue , Método Duplo-Cego , Hormônio do Crescimento Humano/sangue , Humanos , Hidrocortisona/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Appl Physiol Nutr Metab ; 44(1): 7-12, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29906403

RESUMO

The purpose of this study was to evaluate the association between whey protein supplementation, body composition, and muscle strength in resistance-trained individuals. Forty-nine healthy males, aged 18 to 35 years and were engaged in resistance training for at least 1 year, were assigned into 2 groups according to whey protein intake (whey - n = 26, age: 30.7 ± 7.4 years, body mass: 75.8 ± 9.0 kg; without whey: n = 23, age: 31.0 ± 7.4 years, body mass: 77.9 ± 9.3 kg). Using a cross-sectional design, a morning assessment of body fat mass (FM) (by dual-energy X-ray absorptiometry) and strength (using 1-repetition maximum for bench press and back squat) was performed. Nutritional assessment was performed by 3-day food records. Regarding nutritional habits, differences between total energy intake (kcal) and estimated energy requirements (kcal) were observed. Results, from raw data or controlling for energy intake, estimated energy requirements, or achieved percentage of energy requirements, showed that whey protein supplementation was inversely correlated with whole-body FM (R = -0.367 (p = 0.010); R = -0.317 (p = 0.049); R = -0.380 (p = 0.011); R = -0.321 (p = 0.047), respectively), trunk FM (R = -0.396 (p = 0.005), R = -0.367 (p = 0.022), R = -0.423 (p = 0.004), R = -0.369 (p = 0.021), respectively) and android FM (R = -0.381 (p = 0.007), R = -0.332 (p = 0.039), R = -0.383 (p = 0.010), R = -0.336 (p = 0.036), respectively). No correlations were found between muscle strength outcomes and whey protein supplementation. The present data suggest that whey protein ingestion has a positive association with whole-body and regional (trunk and android) FM.


Assuntos
Adiposidade , Suplementos Nutricionais , Força Muscular , Músculo Esquelético/metabolismo , Treinamento Resistido , Proteínas do Soro do Leite/administração & dosagem , Absorciometria de Fóton , Adolescente , Adulto , Estudos Transversais , Ingestão de Energia , Comportamento Alimentar , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Estado Nutricional , Portugal , Proteínas do Soro do Leite/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA