Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 15(1): 112-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38124345

RESUMO

BACKGROUND: Decreased insulin availability and high blood glucose levels, the hallmark features of poorly controlled diabetes, drive disease progression and are associated with decreased skeletal muscle mass. We have shown that mice with ß-cell dysfunction and normal insulin sensitivity have decreased skeletal muscle mass. This project asks how insulin deficiency impacts on the structure and function of the remaining skeletal muscle in these animals. METHODS: Skeletal muscle function was determined by measuring exercise capacity and specific muscle strength prior to and after insulin supplementation for 28 days in 12-week-old mice with conditional ß-cell deletion of the ATP binding cassette transporters ABCA1 and ABCG1 (ß-DKO mice). Abca1 and Abcg1 floxed (fl/fl) mice were used as controls. RNAseq was used to quantify changes in transcripts in soleus and extensor digitorum longus muscles. Skeletal muscle and mitochondrial morphology were assessed by transmission electron microscopy. Myofibrillar Ca2+ sensitivity and maximum isometric single muscle fibre force were assessed using MyoRobot biomechatronics technology. RESULTS: RNA transcripts were significantly altered in ß-DKO mice compared with fl/fl controls (32 in extensor digitorum longus and 412 in soleus). Exercise capacity and muscle strength were significantly decreased in ß-DKO mice compared with fl/fl controls (P = 0.012), and a loss of structural integrity was also observed in skeletal muscle from the ß-DKO mice. Supplementation of ß-DKO mice with insulin restored muscle integrity, strength and expression of 13 and 16 of the dysregulated transcripts in and extensor digitorum longus and soleus muscles, respectively. CONCLUSIONS: Insulin insufficiency due to ß-cell dysfunction perturbs the structure and function of skeletal muscle. These adverse effects are rectified by insulin supplementation.


Assuntos
Insulina , Músculo Esquelético , Camundongos , Animais , Insulina/farmacologia , Insulina/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mitocôndrias/metabolismo
2.
mSystems ; 8(2): e0115922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36880756

RESUMO

Methanogenic archaea possess diverse metabolic characteristics and are an ecologically and biotechnologically important group of anaerobic microorganisms. Although the scientific and biotechnological value of methanogens is evident with regard to their methane-producing physiology, little is known about their amino acid excretion, and virtually nothing is known about the lipidome at different substrate concentrations and temperatures on a quantitative comparative basis. Here, we present the lipidome and a comprehensive quantitative analysis of proteinogenic amino acid excretion as well as methane, water, and biomass production of the three autotrophic, hydrogenotrophic methanogens Methanothermobacter marburgensis, Methanothermococcus okinawensis, and Methanocaldococcus villosus under varying temperatures and nutrient supplies. The patterns and rates of production of excreted amino acids and the lipidome are unique for each tested methanogen and can be modulated by varying the incubation temperature and substrate concentration, respectively. Furthermore, the temperature had a significant influence on the lipidomes of the different archaea. The water production rate was much higher, as anticipated from the rate of methane production for all studied methanogens. Our results demonstrate the need for quantitative comparative physiological studies connecting intracellular and extracellular constraints of organisms to holistically investigate microbial responses to environmental conditions. IMPORTANCE Biological methane production by methanogenic archaea has been well studied for biotechnological purposes. This study reveals that methanogenic archaea actively modulate their lipid inventory and proteinogenic amino acid excretion pattern in response to environmental changes and the possible utilization of methanogenic archaea as microbial cell factories for the targeted production of lipids and amino acids.


Assuntos
Archaea , Euryarchaeota , Archaea/metabolismo , Temperatura , Lipidômica , Euryarchaeota/metabolismo , Metano , Água/metabolismo
3.
Front Microbiol ; 13: 1031131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504798

RESUMO

The development of a sustainable energy economy is one of the great challenges in the current times of climate crisis and growing energy demands. Industrial production of the fifth-generation biofuel methane by microorganisms has the potential to become a crucial biotechnological milestone of the post fossil fuel era. Therefore, reproducible cultivation and scale-up of methanogenic archaea (methanogens) is essential for enabling biomass generation for fundamental studies and for defining peak performance conditions for bioprocess development. This study provides a comprehensive revision of established and optimization of novel methods for the cultivation of the model organism Methanococcus maripaludis S0001. In closed batch mode, 0.05 L serum bottles cultures were gradually replaced by 0.4 L Schott bottle cultures for regular biomass generation, and the time for reaching peak optical density (OD578) values was reduced in half. In 1.5 L reactor cultures, various agitation, harvesting and transfer methods were compared resulting in a specific growth rate of 0.16 h-1 and the highest recorded OD578 of 3.4. Finally, a 300-fold scale-up from serum bottles was achieved by growing M. maripaludis for the first time in a 22 L stainless steel bioreactor with 15 L working volume. Altogether, the experimental approaches described in this study contribute to establishing methanogens as essential organisms in large-scale biotechnology applications, a crucial stage of an urgently needed industrial evolution toward sustainable biosynthesis of energy and high value products.

4.
Skelet Muscle ; 12(1): 14, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35733150

RESUMO

BACKGROUND: A common polymorphism (R577X) in the ACTN3 gene results in the complete absence of the Z-disc protein α-actinin-3 from fast-twitch muscle fibres in ~ 16% of the world's population. This single gene polymorphism has been subject to strong positive selection pressure during recent human evolution. Previously, using an Actn3KO mouse model, we have shown in fast-twitch muscles, eccentric contractions at L0 + 20% stretch did not cause eccentric damage. In contrast, L0 + 30% stretch produced a significant ~ 40% deficit in maximum force; here, we use isolated single fast-twitch skeletal muscle fibres from the Actn3KO mouse to investigate the mechanism underlying this. METHODS: Single fast-twitch fibres are separated from the intact muscle by a collagenase digest procedure. We use label-free second harmonic generation (SHG) imaging, ultra-fast video microscopy and skinned fibre measurements from our MyoRobot automated biomechatronics system to study the morphology, visco-elasticity, force production and mechanical strength of single fibres from the Actn3KO mouse. Data are presented as means ± SD and tested for significance using ANOVA. RESULTS: We show that the absence of α-actinin-3 does not affect the visco-elastic properties or myofibrillar force production. Eccentric contractions demonstrated that chemically skinned Actn3KO fibres are mechanically weaker being prone to breakage when eccentrically stretched. Furthermore, SHG images reveal disruptions in the myofibrillar alignment of Actn3KO fast-twitch fibres with an increase in Y-shaped myofibrillar branching. CONCLUSIONS: The absence of α-actinin-3 from the Z-disc in fast-twitch fibres disrupts the organisation of the myofibrillar proteins, leading to structural weakness. This provides a mechanistic explanation for our earlier findings that in vitro intact Actn3KO fast-twitch muscles are significantly damaged by L0 + 30%, but not L0 + 20%, eccentric contraction strains. Our study also provides a possible mechanistic explanation as to why α-actinin-3-deficient humans have been reported to have a faster decline in muscle function with increasing age, that is, as sarcopenia reduces muscle mass and force output, the eccentric stress on the remaining functional α-actinin-3 deficient fibres will be increased, resulting in fibre breakages.


Assuntos
Actinina , Doenças Musculares , Actinina/genética , Actinina/metabolismo , Animais , Cálcio/metabolismo , Cinética , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo
5.
IEEE Trans Biomed Eng ; 69(7): 2305-2313, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35025732

RESUMO

OBJECTIVE: Decellularizing solid organs is a promising top-down process to produce acellular bio-scaffolds for 'de novo' regrowth or application as tissue 'patches' that compensate, e.g., large volumetric muscle loss in reconstructive surgery. Therefore, generating standardized acellular muscle scaffolds marks a pressing area of need. Although animal muscle decellularization protocols were established, those are mostly manually performed and lack defined bioreactor environments and metrologies to assess decellularization quality in real-time. To close this gap, we engineered an automated bioreactor system to provide chemical decellularization solutions to immersed whole rat gastrocnemius medialis muscle through perfusion of the main feeding arteries. RESULTS: Perfusion control is adjustable according to decellularization quality feedback. This was assessed both from (i) ex situ assessment of sarcomeres/nuclei through multiphoton fluorescence and label-free Second Harmonic Generation microscopy and DNA quantification, along with (ii) in situ within the bioreactor environment assessment of the sample's passive mechanical elasticity. CONCLUSION: We find DNA and sarcomere-free constructs after 72 h of 0.1% SDS perfusion-decellularization. Furthermore, passive elasticity can be implemented as additional online decellularization quality measure, noting a threefold elasticity decrease in acellular constructs. SIGNIFICANCE: Our MyoBio represents a novel and useful automated bioreactor environment for standardized and controlled generation of acellular whole muscle scaffolds as a valuable source for regenerative medicine.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Reatores Biológicos , DNA , Matriz Extracelular , Músculo Esquelético , Perfusão , Ratos , Engenharia Tecidual/métodos
6.
Neuropathol Appl Neurobiol ; 48(3): e12784, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34850968

RESUMO

AIMS: Desminopathies comprise hereditary myopathies and cardiomyopathies caused by mutations in the intermediate filament protein desmin that lead to severe and often lethal degeneration of striated muscle tissue. Animal and single cell studies hinted that this degeneration process is associated with massive ultrastructural defects correlating with increased susceptibility of the muscle to acute mechanical stress. The underlying mechanism of mechanical susceptibility, and how muscle degeneration develops over time, however, has remained elusive. METHODS: Here, we investigated the effect of a desmin mutation on the formation, differentiation, and contractile function of in vitro-engineered three-dimensional micro-tissues grown from muscle stem cells (satellite cells) isolated from heterozygous R349P desmin knock-in mice. RESULTS: Micro-tissues grown from desmin-mutated cells exhibited spontaneous unsynchronised contractions, higher contractile forces in response to electrical stimulation, and faster force recovery compared with tissues grown from wild-type cells. Within 1 week of culture, the majority of R349P desmin-mutated tissues disintegrated, whereas wild-type tissues remained intact over at least three weeks. Moreover, under tetanic stimulation lasting less than 5 s, desmin-mutated tissues partially or completely ruptured, whereas wild-type tissues did not display signs of damage. CONCLUSIONS: Our results demonstrate that the progressive degeneration of desmin-mutated micro-tissues is closely linked to extracellular matrix fibre breakage associated with increased contractile forces and unevenly distributed tensile stress. This suggests that the age-related degeneration of skeletal and cardiac muscle in patients suffering from desminopathies may be similarly exacerbated by mechanical damage from high-intensity muscle contractions. We conclude that micro-tissues may provide a valuable tool for studying the organization of myocytes and the pathogenic mechanisms of myopathies.


Assuntos
Cardiomiopatias , Desmina , Músculos , Animais , Cardiomiopatias/genética , Desmina/genética , Humanos , Camundongos , Músculo Esquelético/patologia , Músculos/patologia , Mutação , Células-Tronco/metabolismo , Células-Tronco/patologia
7.
IEEE Trans Biomed Eng ; 69(1): 148-155, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133271

RESUMO

OBJECTIVE: Muscle biomechanics is set by the spacing of repetitive striation patterns of individual sarcomeres within single muscle fibres of stacked myofibrils. Sarcomere lengths (SL) are rather unequally distributed than of equal distance. This non-uniformity may affect both, force production as well as passive-elastic deformation. However, online recording of SL during axially imposed strains is cumbersome due to a lack of compact technologies. METHODS: To fuse SL pattern recognition with restoration force assessments during quasi-static axial stretch, we implemented live tracking of SL distributions simultaneous to voice-coil actuated stretch and restoration force recordings in our MyoRobot 2.0 automated biomechatronics platform. Both were obtained online during stretch-relaxation cycles of murine single muscle fibres. RESULTS: Under quasi-static stretch conditions (  âˆ¼ 1 µm/s fibre length changes), almost no apparent hysteresis was detected in single fibres. SL showed a non-uniform distribution. While mean SL varied between 2.6 µm and 3.4 µm upon 140% stretch, two populations of fibres were noticed: one showing a minor change in SL distribution with stretch, and one becoming more equally distributed upon stretch. CONCLUSION: A roughly 5% SL variability under rest either diminishes or remains almost unaltered upon elastic axial deformation. This may reflect differential impact of mostly extra-sarcomeric components to stretch in this stretch range. SIGNIFICANCE: The augmented functionality of the MyoRobot 2.0 towards online sarcomere analyses within single fibres shall provide a valuable tool for the muscle community to study the contribution of serial elastic and force producing elements in health and disease models.


Assuntos
Fibras Musculares Esqueléticas , Sarcômeros , Animais , Elasticidade , Camundongos , Contração Muscular , Relação Estrutura-Atividade
8.
J Mech Behav Biomed Mater ; 119: 104430, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780851

RESUMO

During the cardiac cycle, electrical excitation is coupled with mechanical response of the myocardium. Besides the active contraction, passive mechanics plays an important role, and its behaviour differs in healthy and diseased hearts as well as among different animal species. The aim of this study is the characterisation of passive mechanical properties in healthy and infarcted rat myocardium by means of mechanical testing and subsequent parameter fitting. Elasticity assessments via uniaxial extension tests are performed on healthy and infarcted tissue samples from left ventricular rat myocardium. In order to fully characterise the orthotropic cardiac tissue, our experimental data are combined with other previously published tests in rats - shear tests on healthy myocardium and equibiaxial tests on infarcted tissue. In a first step, we calibrate the Holzapfel-Ogden strain energy function in the healthy case. Sa far, this orthotropic constitutive law for the passive myocardium has been fitted to experimental data in several species, however there is a lack of an appropriate parameter set for the rat. With our determined parameters, a finite element simulation of the end-diastolic filling is performed. In a second step, we propose a model for the infarcted tissue. It is represented as a mixture of intact myocardium and a transversely isotropic scar structure. In our mechanical experiments, the tissue after myocardial infarction shows significantly stiffer behaviour than in the healthy case, and the stiffness correlates with the amount of fibrosis. A similar relationship is observed in the computational simulation of the end-diastolic filling. We conclude that our new proposed material model can capture the behaviour of two kinds of tissues - healthy and infarcted rat myocardium, and its calibration with the fitted parameters represents the experimental data well.


Assuntos
Ventrículos do Coração , Infarto do Miocárdio , Animais , Simulação por Computador , Coração , Miocárdio , Ratos
9.
Commun Biol ; 4(1): 289, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674723

RESUMO

Bioprocesses converting carbon dioxide with molecular hydrogen to methane (CH4) are currently being developed to enable a transition to a renewable energy production system. In this study, we present a comprehensive physiological and biotechnological examination of 80 methanogenic archaea (methanogens) quantifying growth and CH4 production kinetics at hyperbaric pressures up to 50 bar with regard to media, macro-, and micro-nutrient supply, specific genomic features, and cell envelope architecture. Our analysis aimed to systematically prioritize high-pressure and high-performance methanogens. We found that the hyperthermophilic methanococci Methanotorris igneus and Methanocaldococcoccus jannaschii are high-pressure CH4 cell factories. Furthermore, our analysis revealed that high-performance methanogens are covered with an S-layer, and that they harbour the amino acid motif Tyrα444 Glyα445 Tyrα446 in the alpha subunit of the methyl-coenzyme M reductase. Thus, high-pressure biological CH4 production in pure culture could provide a purposeful route for the transition to a carbon-neutral bioenergy sector.


Assuntos
Microbiologia Industrial , Metano/metabolismo , Methanocaldococcaceae/metabolismo , Methanocaldococcus/metabolismo , Motivos de Aminoácidos , Ensaios de Triagem em Larga Escala , Cinética , Glicoproteínas de Membrana/metabolismo , Methanocaldococcaceae/crescimento & desenvolvimento , Methanocaldococcus/crescimento & desenvolvimento , Oxirredutases/metabolismo , Pressão , Energia Renovável
10.
J Cachexia Sarcopenia Muscle ; 12(2): 443-455, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33465304

RESUMO

BACKGROUND: Prolonged critically ill patients frequently develop debilitating muscle weakness that can affect both peripheral nerves and skeletal muscle. In-depth knowledge on the temporal contribution of neural and muscular components to muscle weakness is currently incomplete. METHODS: We used a fluid-resuscitated, antibiotic-treated, parenterally fed murine model of prolonged (5 days) sepsis-induced muscle weakness (caecal ligation and puncture; n = 148). Electromyography (EMG) measurements were performed in two nerve-muscle complexes, combined with histological analysis of neuromuscular junction denervation, axonal degeneration, and demyelination. In situ muscle force measurements distinguished neural from muscular contribution to reduced muscle force generation. In myofibres, imaging and biomechanics were combined to evaluate myofibrillar contractile calcium sensitivity, sarcomere organization, and fibre structural properties. Myosin and actin protein content and titin gene expression were measured on the whole muscle. RESULTS: Five days of sepsis resulted in increased EMG latency (P = 0.006) and decreased EMG amplitude (P < 0.0001) in the dorsal caudal tail nerve-tail complex, whereas only EMG amplitude was affected in the sciatic nerve-gastrocnemius muscle complex (P < 0.0001). Myelin sheath abnormalities (P = 0.2), axonal degeneration (number of axons; P = 0.4), and neuromuscular junction denervation (P = 0.09) were largely absent in response to sepsis, but signs of axonal swelling [higher axon area (P < 0.0001) and g-ratio (P = 0.03)] were observed. A reduction in maximal muscle force was present after indirect nerve stimulation (P = 0.007) and after direct muscle stimulation (P = 0.03). The degree of force reduction was similar with both stimulations (P = 0.2), identifying skeletal muscle, but not peripheral nerves, as the main contributor to muscle weakness. Myofibrillar calcium sensitivity of the contractile apparatus was unaffected by sepsis (P ≥ 0.6), whereas septic myofibres displayed disorganized sarcomeres (P < 0.0001) and altered myofibre axial elasticity (P < 0.0001). Septic myofibres suffered from increased rupturing in a passive stretching protocol (25% more than control myofibres; P = 0.04), which was associated with impaired myofibre active force generation (P = 0.04), linking altered myofibre integrity to function. Sepsis also caused a reduction in muscle titin gene expression (P = 0.04) and myosin and actin protein content (P = 0.05), but not the myosin-to-actin ratio (P = 0.7). CONCLUSIONS: Prolonged sepsis-induced muscle weakness may predominantly be related to a disruption in myofibrillar cytoarchitectural structure, rather than to neural abnormalities.


Assuntos
Contração Muscular , Sepse , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Debilidade Muscular/etiologia , Músculo Esquelético
11.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752098

RESUMO

Muscle biomechanics relies on active motor protein assembly and passive strain transmission through cytoskeletal structures. The desmin filament network aligns myofibrils at the z-discs, provides nuclear-sarcolemmal anchorage and may also serve as memory for muscle repositioning following large strains. Our previous analyses of R349P desmin knock-in mice, an animal model for the human R350P desminopathy, already depicted pre-clinical changes in myofibrillar arrangement and increased fiber bundle stiffness. As the effect of R349P desmin on axial biomechanics in fully differentiated single muscle fibers is unknown, we used our MyoRobot to compare passive visco-elasticity and active contractile biomechanics in single fibers from fast- and slow-twitch muscles from adult to senile mice, hetero- or homozygous for the R349P desmin mutation with wild type littermates. We demonstrate that R349P desmin presence predominantly increased axial stiffness in both muscle types with a pre-aged phenotype over wild type fibers. Axial viscosity and Ca2+-mediated force were largely unaffected. Mutant single fibers showed tendencies towards faster unloaded shortening over wild type fibers. Effects of aging seen in the wild type appeared earlier in the mutant desmin fibers. Our single-fiber experiments, free of extracellular matrix, suggest that compromised muscle biomechanics is not exclusively attributed to fibrosis but also originates from an impaired intermediate filament network.


Assuntos
Envelhecimento/genética , Desmina/genética , Fibras Musculares Esqueléticas/química , Miofibrilas/genética , Envelhecimento/fisiologia , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Citoesqueleto/química , Citoesqueleto/genética , Desmina/química , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Filamentos Intermediários/química , Filamentos Intermediários/genética , Camundongos , Contração Muscular/genética , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Mutação/genética , Miofibrilas/química
12.
Microorganisms ; 8(3)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210133

RESUMO

Formate is one of the key compounds of the microbial carbon and/or energy metabolism. It owes a significant contribution to various anaerobic syntrophic associations, and may become one of the energy storage compounds of modern energy biotechnology. Microbial growth on formate was demonstrated for different bacteria and archaea, but not yet for species of the archaeal phylum Crenarchaeota. Here, we show that Desulfurococcus amylolyticus DSM 16532, an anaerobic and hyperthermophilic Crenarchaeon, metabolises formate without the production of molecular hydrogen. Growth, substrate uptake, and production kinetics on formate, glucose, and glucose/formate mixtures exhibited similar specific growth rates and similar final cell densities. A whole cell conversion experiment on formate revealed that D. amylolyticus converts formate into carbon dioxide, acetate, citrate, and ethanol. Using bioinformatic analysis, we examined whether one of the currently known and postulated formate utilisation pathways could be operative in D. amylolyticus. This analysis indicated the possibility that D. amylolyticus uses formaldehyde producing enzymes for the assimilation of formate. Therefore, we propose that formate might be assimilated into biomass through formaldehyde dehydrogenase and the oxidative pentose phosphate pathway. These findings shed new light on the metabolic versatility of the archaeal phylum Crenarchaeota.

13.
ACS Biomater Sci Eng ; 6(4): 1887-1898, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33455306

RESUMO

The development of suitable synthetic scaffolds for use as human tendon grafts to repair tendon ruptures remains a significant engineering challenge. Previous synthetic tendon grafts have demonstrated suboptimal tissue ingrowth and synovitis due to wear particles from fiber-to-fiber abrasion. In this study, we present a novel fiber-reinforced hydrogel (FRH) that mimics the hierarchical structure of the native human tendon for synthetic tendon graft material. Ultrahigh molecular weight polyethylene (UHMWPE) fibers were impregnated with either biosynthetic polyvinyl alcohol/gelatin hydrogel (FRH-PG) or with polyvinyl alcohol/gelatin + strontium-hardystonite (Sr-Ca2ZnSi2O7, Sr-HT) composite hydrogel (FRH-PGS). The scaffolds were fabricated and assessed to evaluate their suitability for tendon graft applications. The microstructure of both FRH-PG and FRH-PGS showed successful impregnation of the hydrogel component, and the tendon scaffolds exhibited equilibrium water content of ∼70 wt %, similar to the values reported for native human tendon, compared to ∼50 wt % water content retained in unmodified UHMWPE fibers. The tensile strength of FRH-PG and FRH-PGS (77.0-81.8 MPa) matched the range of human Achilles' tendon tensile strengths reported in the literature. In vitro culture of rat tendon stem cells showed cell and tissue infiltration into both FRH-PG and FRH-PGS after 2 weeks, and the presence of Sr-HT ceramic particles influenced the expression of tenogenic markers. On the other hand, FRH-PG supported the proliferation of murine C2C12 myoblasts, whereas FRH-PGS seemingly did not support it under static culture conditions. In vivo implantation of FRH-PG and FRH-PGS scaffolds into full-thickness rat patellar tendon defects showed good collagenous tissue ingrowth into these scaffolds after 6 weeks. This study demonstrates the potential viability for our FRH-PG and FRH-PGS scaffolds to be used for off-the-shelf biosynthetic tendon graft material.


Assuntos
Hidrogéis , Alicerces Teciduais , Animais , Camundongos , Ratos , Células-Tronco , Resistência à Tração , Engenharia Tecidual
14.
Life (Basel) ; 9(4)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739502

RESUMO

Lipids and amino acids are regarded as important biomarkers for the search for extraterrestrial life in the Solar System. Such biomarkers may be used to trace methanogenic life on other planets or moons in the Solar System, such as Saturn's icy moon Enceladus. However, little is known about the environmental conditions shaping the synthesis of lipids and amino acids. Here, we present the lipid production and amino acid excretion patterns of the methanogenic archaeon Methanothermococcus okinawensis after exposing it to different multivariate concentrations of the inhibitors ammonium, formaldehyde, and methanol present in the Enceladian plume. M. okinawensis shows different patterns of lipid and amino acids excretion, depending on the amount of these inhibitors in the growth medium. While methanol did not show a significant impact on growth, lipid or amino acid production rates, ammonium and formaldehyde strongly affected these parameters. These findings are important for understanding the eco-physiology of methanogens on Earth and have implications for the use of biomarkers as possible signs of extraterrestrial life for future space missions in the Solar System.

15.
Sci Rep ; 9(1): 10769, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341183

RESUMO

Mutations in the Des gene coding for the muscle-specific intermediate filament protein desmin lead to myopathies and cardiomyopathies. We previously generated a R349P desmin knock-in mouse strain as a patient-mimicking model for the corresponding most frequent human desmin mutation R350P. Since nothing is known about the age-dependent changes in the biomechanics of affected muscles, we investigated the passive and active biomechanics of small fiber bundles from young (17-23 wks), adult (25-45 wks) and aged (>60 wks) heterozygous and homozygous R349P desmin knock-in mice in comparison to wild-type littermates. We used a novel automated biomechatronics platform, the MyoRobot, to perform coherent quantitative recordings of passive (resting length-tension curves, visco-elasticity) and active (caffeine-induced force transients, pCa-force, 'slack-tests') parameters to determine age-dependent effects of the R349P desmin mutation in slow-twitch soleus and fast-twitch extensor digitorum longus small fiber bundles. We demonstrate that active force properties are not affected by this mutation while passive steady-state elasticity is vastly altered in R349P desmin fiber bundles compatible with a pre-aged phenotype exhibiting stiffer muscle preparations. Visco-elasticity on the other hand, was not altered. Our study represents the first systematic age-related characterization of small muscle fiber bundle preparation biomechanics in conjunction with inherited desminopathy.


Assuntos
Cardiomiopatias/patologia , Fibras Musculares Esqueléticas/patologia , Distrofias Musculares/patologia , Fatores Etários , Animais , Automação Laboratorial , Fenômenos Biomecânicos , Biotecnologia/instrumentação , Biotecnologia/métodos , Cardiomiopatias/fisiopatologia , Desmina/genética , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Transgênicos , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares Esqueléticas/parasitologia , Fibras Musculares de Contração Lenta/patologia , Fibras Musculares de Contração Lenta/fisiologia , Distrofias Musculares/fisiopatologia , Robótica/instrumentação , Robótica/métodos
16.
Light Sci Appl ; 7: 79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374401

RESUMO

Skeletal muscle is an archetypal organ whose structure is tuned to match function. The magnitude of order in muscle fibers and myofibrils containing motor protein polymers determines the directed force output of the summed force vectors and, therefore, the muscle's power performance on the structural level. Structure and function can change dramatically during disease states involving chronic remodeling. Cellular remodeling of the cytoarchitecture has been pursued using noninvasive and label-free multiphoton second harmonic generation (SHG) microscopy. Hereby, structure parameters can be extracted as a measure of myofibrillar order and thus are suggestive of the force output that a remodeled structure can still achieve. However, to date, the parameters have only been an indirect measure, and a precise calibration of optical SHG assessment for an exerted force has been elusive as no technology in existence correlates these factors.  We engineered a novel, automated, high-precision biomechatronics system into a multiphoton microscope allows simultaneous isometric Ca2+-graded force or passive viscoelasticity measurements and SHG recordings. Using this MechaMorph system, we studied force and SHG in single EDL muscle fibers from wt and mdx mice; the latter serves as a model for compromised force and abnormal myofibrillar structure. We present Ca2+-graded isometric force, pCa-force curves, passive viscoelastic parameters and 3D structure in the same fiber for the first time. Furthermore, we provide a direct calibration of isometric force to morphology, which allows noninvasive prediction of the force output of single fibers from only multiphoton images, suggesting a potential application in the diagnosis of myopathies.

17.
Appl Microbiol Biotechnol ; 102(17): 7643-7656, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959465

RESUMO

Accumulation of carbon dioxide (CO2), associated with global temperature rise, and drastically decreasing fossil fuels necessitate the development of improved renewable and sustainable energy production processes. A possible route for CO2 recycling is to employ autotrophic and hydrogenotrophic methanogens for CO2-based biological methane (CH4) production (CO2-BMP). In this study, the physiology and productivity of Methanobacterium thermaggregans was investigated in fed-batch cultivation mode. It is shown that M. thermaggregans can be reproducibly adapted to high agitation speeds for an improved CH4 productivity. Moreover, inoculum size, sulfide feeding, pH, and temperature were optimized. Optimization of growth and CH4 productivity revealed that M. thermaggregans is a slightly alkaliphilic and thermophilic methanogen. Hitherto, it was only possible to grow seven autotrophic, hydrogenotrophic methanogenic strains in fed-batch cultivation mode. Here, we show that after a series of optimization and growth improvement attempts another methanogen, M. thermaggregas could be adapted to be grown in fed-batch cultivation mode to cell densities of up to 1.56 g L-1. Moreover, the CH4 evolution rate (MER) of M. thermaggregans was compared to Methanothermobacter marburgensis, the CO2-BMP model organism. Under optimized cultivation conditions, a maximum MER of 96.1 ± 10.9 mmol L-1 h-1 was obtained with M. thermaggregans-97% of the maximum MER that was obtained utilizing M. marburgensis in a reference experiment. Therefore, M. thermaggregans can be regarded as a CH4 cell factory highly suited to be applicable for CO2-BMP.


Assuntos
Metano/biossíntese , Methanobacterium/fisiologia , Reatores Biológicos , Dióxido de Carbono/química
18.
Folia Microbiol (Praha) ; 63(6): 713-723, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29797222

RESUMO

Desulfurococcus amylolyticus DSM 16532 is an anaerobic and hyperthermophilic crenarchaeon known to grow on a variety of different carbon sources, including monosaccharides and polysaccharides. Furthermore, D. amylolyticus is one of the few archaea that are known to be able to grow on cellulose. Here, we present the metabolic reconstruction of D. amylolyticus' central carbon metabolism. Based on the published genome, the metabolic reconstruction was completed by integrating complementary information available from the KEGG, BRENDA, UniProt, NCBI, and PFAM databases, as well as from available literature. The genomic analysis of D. amylolyticus revealed genes for both the classical and the archaeal version of the Embden-Meyerhof pathway. The metabolic reconstruction highlighted gaps in carbon dioxide-fixation pathways. No complete carbon dioxide-fixation pathway such as the reductive citrate cycle or the dicarboxylate-4-hydroxybutyrate cycle could be identified. However, the metabolic reconstruction indicated that D. amylolyticus harbors all genes necessary for glucose metabolization. Closed batch experimental verification of glucose utilization by D. amylolyticus was performed in chemically defined medium. The findings from in silico analyses and from growth experiments are discussed with respect to physiological features of hyperthermophilic organisms.


Assuntos
Desulfurococcaceae/metabolismo , Glucose/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , Desulfurococcaceae/genética , Fermentação , Genoma Bacteriano , Gluconeogênese , Glicólise , Redes e Vias Metabólicas
19.
Sci Rep ; 7(1): 1391, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469177

RESUMO

In striated muscle, desmin intermediate filaments interlink the contractile myofibrillar apparatus with mitochondria, nuclei, and the sarcolemma. The desmin network's pivotal role in myocytes is evident since mutations in the human desmin gene cause severe myopathies and cardiomyopathies. Here, we investigated skeletal muscle pathology in myofibers and myofibrils isolated from young hetero- and homozygous R349P desmin knock-in mice, which carry the orthologue of the most frequent human desmin missense mutation R350P. We demonstrate that mutant desmin alters myofibrillar cytoarchitecture, markedly disrupts the lateral sarcomere lattice and distorts myofibrillar angular axial orientation. Biomechanical assessment revealed a high predisposition to stretch-induced damage in fiber bundles of R349P mice. Notably, Ca2+-sensitivity and passive myofibrillar tension were decreased in heterozygous fiber bundles, but increased in homozygous fiber bundles compared to wildtype mice. In a parallel approach, we generated and subsequently subjected immortalized heterozygous R349P desmin knock-in myoblasts to magnetic tweezer experiments that revealed a significantly increased sarcolemmal lateral stiffness. Our data suggest that mutated desmin already markedly impedes myocyte structure and function at pre-symptomatic stages of myofibrillar myopathies.


Assuntos
Desmina/fisiologia , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/fisiologia , Miofibrilas/fisiologia , Animais , Fenômenos Biomecânicos , Sinalização do Cálcio , Células Cultivadas , Desmina/genética , Técnicas de Introdução de Genes , Camundongos Transgênicos , Contração Muscular , Músculo Esquelético/patologia , Mutação , Miofibrilas/patologia
20.
J Physiol ; 594(24): 7381-7398, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27641745

RESUMO

KEY POINTS: Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+ -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. ABSTRACT: Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²âº homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+ -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP3 )-mediated Ca2+ transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP3 -mediated Ca2+ transients too, they significantly reduced the amplitude of the depolarization-evoked transients in a pertussis-toxin sensitive manner, indicating a Gi/o protein-dependent mechanism. Concurrently, on skeletal muscle fibres isolated from CB1R-knockout animals, depolarization-evoked Ca2+ transients, as well qas Ca2+ release flux via ryanodine receptors (RyRs), and the total amount of released Ca2+ was significantly greater than that from wild-type mice. Our results show that CB1R-mediated signalling exerts both a constitutive and an agonist-mediated inhibition on the Ca2+ transients via RyR, regulates the activity of the sarcoplasmic reticulum Ca2+ ATPase and enhances muscle fatigability, which might decrease exercise performance, thus playing a role in myopathies, and therefore should be considered during the development of new cannabinoid drugs.


Assuntos
Cálcio/metabolismo , Acoplamento Excitação-Contração/fisiologia , Músculo Esquelético/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Retículo Sarcoplasmático/metabolismo , Animais , Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Fadiga Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA