Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38314581

RESUMO

Neural circuits support behavioral adaptations by integrating sensory and motor information with reward and error-driven learning signals, but it remains poorly understood how these signals are distributed across different levels of the corticohippocampal hierarchy. We trained rats on a multisensory object-recognition task and compared visual and tactile responses of simultaneously recorded neuronal ensembles in somatosensory cortex, secondary visual cortex, perirhinal cortex, and hippocampus. The sensory regions primarily represented unisensory information, whereas hippocampus was modulated by both vision and touch. Surprisingly, the sensory cortices and the hippocampus coded object-specific information, whereas the perirhinal cortex did not. Instead, perirhinal cortical neurons signaled trial outcome upon reward-based feedback. A majority of outcome-related perirhinal cells responded to a negative outcome (reward omission), whereas a minority of other cells coded positive outcome (reward delivery). Our results highlight a distributed neural coding of multisensory variables in the cortico-hippocampal hierarchy. Notably, the perirhinal cortex emerges as a crucial region for conveying motivational outcomes, whereas distinct functions related to object identity are observed in the sensory cortices and hippocampus.


Assuntos
Córtex Perirrinal , Ratos , Animais , Hipocampo/fisiologia , Percepção Visual/fisiologia , Lobo Parietal , Recompensa
2.
Front Neuroinform ; 18: 1284107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421771

RESUMO

Neuroscientists employ a range of methods and generate increasing amounts of data describing brain structure and function. The anatomical locations from which observations or measurements originate represent a common context for data interpretation, and a starting point for identifying data of interest. However, the multimodality and abundance of brain data pose a challenge for efforts to organize, integrate, and analyze data based on anatomical locations. While structured metadata allow faceted data queries, different types of data are not easily represented in a standardized and machine-readable way that allow comparison, analysis, and queries related to anatomical relevance. To this end, three-dimensional (3D) digital brain atlases provide frameworks in which disparate multimodal and multilevel neuroscience data can be spatially represented. We propose to represent the locations of different neuroscience data as geometric objects in 3D brain atlases. Such geometric objects can be specified in a standardized file format and stored as location metadata for use with different computational tools. We here present the Locare workflow developed for defining the anatomical location of data elements from rodent brains as geometric objects. We demonstrate how the workflow can be used to define geometric objects representing multimodal and multilevel experimental neuroscience in rat or mouse brain atlases. We further propose a collection of JSON schemas (LocareJSON) for specifying geometric objects by atlas coordinates, suitable as a starting point for co-visualization of different data in an anatomical context and for enabling spatial data queries.

3.
Sci Data ; 10(1): 645, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735463

RESUMO

The orbitofrontal, posterior parietal, and insular cortices are sites of higher-order cognitive processing implicated in a wide range of behaviours, including working memory, attention guiding, decision making, and spatial navigation. To better understand how these regions contribute to such functions, we need detailed knowledge about the underlying structural connectivity. Several tract-tracing studies have investigated specific aspects of orbitofrontal, posterior parietal and insular connectivity, but a digital resource for studying the cortical and subcortical projections from these areas in detail is not available. We here present a comprehensive collection of brightfield and fluorescence microscopic images of serial coronal sections from 49 rat brain tract-tracing experiments, in which discrete injections of the anterograde tracers biotinylated dextran amine and/or Phaseolus vulgaris leucoagglutinin were placed in the orbitofrontal, parietal, or insular cortex. The images are spatially registered to the Waxholm Space Rat brain atlas. The image collection, with corresponding reference atlas maps, is suitable as a reference framework for investigating the brain-wide efferent connectivity of these cortical association areas.


Assuntos
Encéfalo , Córtex Insular , Animais , Ratos , Conhecimento , Memória de Curto Prazo , Processos Mentais
4.
Cereb Cortex ; 33(13): 8247-8264, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37118890

RESUMO

Cortical computations require coordination of neuronal activity within and across multiple areas. We characterized spiking relationships within and between areas by quantifying coupling of single neurons to population firing patterns. Single-neuron population coupling (SNPC) was investigated using ensemble recordings from hippocampal CA1 region and somatosensory, visual, and perirhinal cortices. Within-area coupling was heterogeneous across structures, with area CA1 showing higher levels than neocortical regions. In contrast to known anatomical connectivity, between-area coupling showed strong firing coherence of sensory neocortices with CA1, but less with perirhinal cortex. Cells in sensory neocortices and CA1 showed positive correlations between within- and between-area coupling; these were weaker for perirhinal cortex. All four areas harbored broadcasting cells, connecting to multiple external areas, which was uncorrelated to within-area coupling strength. When examining correlations between SNPC and spatial coding, we found that, if such correlations were significant, they were negative. This result was consistent with an overall preservation of SNPC across different brain states, suggesting a strong dependence on intrinsic network connectivity. Overall, SNPC offers an important window on cell-to-population synchronization in multi-area networks. Instead of pointing to specific information-coding functions, our results indicate a primary function of SNPC in dynamically organizing communication in systems composed of multiple, interconnected areas.


Assuntos
Córtex Perirrinal , Ratos , Animais , Hipocampo , Neurônios/fisiologia , Região CA1 Hipocampal/fisiologia , Lobo Parietal
5.
Front Neuroinform ; 17: 1154080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970659

RESUMO

Brain atlases are widely used in neuroscience as resources for conducting experimental studies, and for integrating, analyzing, and reporting data from animal models. A variety of atlases are available, and it may be challenging to find the optimal atlas for a given purpose and to perform efficient atlas-based data analyses. Comparing findings reported using different atlases is also not trivial, and represents a barrier to reproducible science. With this perspective article, we provide a guide to how mouse and rat brain atlases can be used for analyzing and reporting data in accordance with the FAIR principles that advocate for data to be findable, accessible, interoperable, and re-usable. We first introduce how atlases can be interpreted and used for navigating to brain locations, before discussing how they can be used for different analytic purposes, including spatial registration and data visualization. We provide guidance on how neuroscientists can compare data mapped to different atlases and ensure transparent reporting of findings. Finally, we summarize key considerations when choosing an atlas and give an outlook on the relevance of increased uptake of atlas-based tools and workflows for FAIR data sharing.

6.
Curr Biol ; 27(2): 166-174, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28041793

RESUMO

Motile cilia are actively beating hair-like structures that cover the surface of multiple epithelia. The flow that ciliary beating generates is utilized for diverse functions and depends on the spatial location and biophysical properties of cilia. Here we show that the motile cilia in the nose of aquatic vertebrates are spatially organized and stably beat with an asymmetric pattern, resulting in a robust and stereotypical flow around the nose. Our results demonstrate that these flow fields attract odors to the nose pit and facilitate detection of odors by the olfactory system in stagnant environments. Moreover, we show that ciliary beating quickly exchanges the content of the nose, thereby improving the temporal resolution of the olfactory system for detecting dynamic changes of odor plumes in turbulent environments. Altogether, our work unravels a central function of ciliary beating for generating flow fields that increase the sensitivity and the temporal resolution of olfactory computations in the vertebrate brain.


Assuntos
Cílios/fisiologia , Epitélio/fisiologia , Nariz/fisiologia , Olfato , Peixe-Zebra/fisiologia , Animais , Fenômenos Biofísicos , Odorantes , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA