Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Energy Environ Sci ; 17(12): 4137-4146, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38899028

RESUMO

Controlling solid electrolyte interphase (SEI) in batteries is crucial for their efficient cycling. Herein, we demonstrate an approach to enable robust battery performance that does not rely on high fractions of fluorinated species in electrolytes, thus substantially decreasing the environmental footprint and cost of high-energy batteries. In this approach, we use very low fractions of readily reducible fluorinated cations in electrolyte (∼0.1 wt%) and employ electrostatic attraction to generate a substantial population of these cations at the anode surface. As a result, we can form a robust fluorine-rich SEI that allows for dendrite-free deposition of dense Li and stable cycling of Li-metal full cells with high-voltage cathodes. Our approach represents a general strategy for delivering desired chemical species to battery anodes through electrostatic attraction while using minute amounts of additive.

2.
Chem Mater ; 36(3): 1308-1317, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38385123

RESUMO

Photoacids are organic molecules that release protons under illumination, providing spatiotemporal control of the pH. Such light-driven pH switches offer the ability to cyclically alter the pH of the medium and are highly attractive for a wide variety of applications, including CO2 capture. Although photoacids such as protonated merocyanine can enable fully reversible pH cycling in water, they have a limited chemical stability against hydrolysis (<24 h). Moreover, these photoacids have low solubility, which limits the pH-switching ability in a buffered solution such as dissolved CO2. In this work, we introduce a simple pathway to dramatically increase stability and solubility of photoacids by tuning their solvation environment in binary solvent mixtures. We show that a preferential solvation of merocyanine by aprotic solvent molecules results in a 60% increase in pH modulation magnitude when compared to the behavior in pure water and can withstand stable cycling for >350 h. Our results suggest that a very high stability of merocyanine photoacids can be achieved in the right solvent mixtures, offering a way to bypass complex structural modifications of photoacid molecules and serving as the key milestone toward their application in a photodriven CO2 capture process.

3.
ACS Polym Au ; 2(2): 80-87, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35445215

RESUMO

Herein, we synthesized a series of siloxane-based poly(ionic liquid)s (PILs) with imidazolium-type species in the main chain via the multicomponent Debus-Radziszewski reaction. We employed oligodimethylsiloxane diamine precursors to integrate flexible spacers in the polymer backbone and ultimately succeeded in obtaining main-chain PILs with low glass transition temperatures (T g s) in the range of -40 to -18 °C. Such PILs were combined with conventional hydrophobic vinylimidazolium-based PILs for the fabrication of porous membranes via interpolyelectrolyte complexation with poly(acrylic acid), which leads to enhanced mechanical performance in the tensile testing measurements. This study will enrich the structure library of main-chain PILs and open up more opportunities for potential industrial applications of porous imidazolium-based membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA