RESUMO
Deep Brain Stimulation (DBS) is an experimental treatment for medication-refractory neuropathic pain. The ventral posteromedial (VPM) and ventral posterolateral (VPL) nuclei of the thalamus are popular targets for the treatment of facial and limb pain, respectively. While intraoperative testing is used to adjust targeting of patient-specific pain locations, a better understanding of thalamic somatotopy may improve targeting of specific body regions including the individual trigeminal territories, face, arm, and leg. To elucidate the somatotopic organization of the ventral nuclear group of the dorsal thalamus using in vivo macrostimulation data from patients undergoing DBS for refractory neuropathic pain. In vivo macrostimulation data was retrospectively collected for 14 patients who underwent DBS implantation for neuropathic pain syndromes at our institution. 56 contacts from 14 electrodes reconstructed with LeadDBS were assigned to macrostimulation-related body regions: tongue, face, arm, or leg. 33 contacts from 9 electrodes were similarly assigned to one of three trigeminal territories: V1, V2, or V3. MNI coordinates in the x, y, and z axes were compared by using MANOVA. Across the horizontal plane of the ventral nuclear group of the dorsal thalamus, the tongue was represented significantly medially, followed by the face, arm, and leg most laterally (p < 0.001). The trigeminal territories displayed significant mediolateral distribution, proceeding from V1 and V2 most medial to V3 most lateral (p < 0.001). Along the y-axis, V2 was also significantly anterior to V3 (p = 0.014). While our results showed that the ventral nuclear group of the dorsal thalamus displayed mediolateral somatotopy of the tongue, face, arm, and leg mirroring the cortical homunculus, the mediolateral distribution of trigeminal territories did not mirror the established cortical homunculus. This finding suggests that the facial homunculus may be inverted in the ventral nuclear group of the dorsal thalamus.
Assuntos
Estimulação Encefálica Profunda , Neuralgia , Humanos , Núcleos Ventrais do Tálamo , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Tálamo/fisiologia , Neuralgia/terapiaRESUMO
Objective: To characterize ictal EEG change in the centromedian (CM) and anterior nucleus (AN) of the thalamus, using stereoelectroencephalography (SEEG) recordings. Methods: Forty habitual seizures were analyzed in nine patients with pediatric-onset neocortical drug-resistant epilepsy who underwent SEEG (age 2-25 y) with thalamic coverage. Both visual and quantitative analysis was used to evaluate ictal EEG signal in the cortex and thalamus. The amplitude and cortico-thalamic latencies of broadband frequencies at ictal onset were measured. Results: Visual analysis demonstrated consistent detection of ictal EEG changes in both the CM nucleus and AN nucleus with latency to thalamic ictal EEG changes of less than 400ms in 95% of seizures, with low-voltage fast activity being the most common ictal pattern. Quantitative broadband amplitude analysis showed consistent power changes across the frequency bands, corresponding to ictal EEG onset, while while ictal EEG latency was variable from -18.0 seconds to 13.2 seconds. There was no significant difference between detection of CM and AN ictal activity on visual or amplitude analysis. Four patients with subsequent thalamic responsive neurostimulation (RNS) demonstrated ictal EEG changes consistent with SEEG findings. Conclusions: Ictal EEG changes were consistently seen at the CM and AN of the thalamus during neocortical seizures. Significance: It may be feasible to use a closed-loop system in the thalamus to detect and modulate seizure activity for neocortical epilepsy.
RESUMO
BACKGROUND: Dementia affects more than 55 million people worldwide. Several technologies have been developed to slow cognitive decline: deep brain stimulation (DBS) of network targets in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) have been recently investigated. OBJECTIVE: This study aimed to review the characteristics of the populations, protocols, and outcomes of patients with dementia enrolled in clinical trials investigating the feasibility and efficacy of DBS. MATERIALS AND METHODS: A systematic search of all registered RCTs was performed on Clinicaltrials.gov and EudraCT, while a systematic literature review was conducted on PubMed, Scopus, Cochrane, and APA PsycInfo to identify published trials. RESULTS: The literature search yielded 2122 records, and the clinical trial search 15 records. Overall, 17 studies were included. Two of 17 studies were open-label studies reporting no NCT/EUCT code and were analysed separately. Of 12 studies investigating the role of DBS in AD, we included 5 published RCTs, 2 unregistered open-label (OL) studies, 3 recruiting studies, and 2 unpublished trials with no evidence of completion. The overall risk of bias was assessed as moderate-high. Our review showed significant heterogeneity in the recruited populations regarding age, disease severity, informed consent availability, inclusion, and exclusion criteria. Notably, the standard mean of overall severe adverse events was moderately high (SAEs: 9.10 ± 7.10%). CONCLUSION: The population investigated is small and heterogeneous, published results from clinical trials are under-represented, severe adverse events not negligible, and cognitive outcomes uncertain. Overall, the validity of these studies requires confirmation based on forthcoming higher-quality clinical trials.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Estimulação Encefálica Profunda , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Estudos LongitudinaisRESUMO
OBJECTIVE: Major depression affects millions of people worldwide and has important social and economic consequences. Since up to 30% of patients do not respond to several lines of antidepressive drugs, deep brain stimulation (DBS) has been evaluated for the management of treatment-resistant depression (TRD). The superolateral branch of the medial forebrain bundle (slMFB) appears as a "hypothesis-driven target" because of its role in the reward-seeking system, which is dysfunctional in depression. Although initial results of slMFB-DBS from open-label studies were promising and characterized by a rapid clinical response, long-term outcomes of neurostimulation for TRD deserve particular attention. Therefore, we performed a systematic review focused on the long-term outcome of slMFB-DBS. MATERIALS AND METHODS: A literature search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria was conducted to identify all studies reporting changes in depression scores after one-year follow-up and beyond. Patient, disease, surgical, and outcome data were extracted for statistical analysis. The Montgomery-Åsberg Depression Rating Scale (ΔMADRS) was used as the clinical outcome, defined as percentage reduction from baseline to follow-up evaluation. Responders' and remitters' rates were also calculated. RESULTS: From 56 studies screened for review, six studies comprising 34 patients met the inclusion criteria and were analyzed. After one year of active stimulation, ΔMADRS was 60.7% ± 4%; responders' and remitters' rates were 83.8% and 61.5%, respectively. At the last follow-up, four to five years after the implantation, ΔMADRS reached 74.7% ± 4.6%. The most common side effects were stimulation related and reversible with parameter adjustments. CONCLUSIONS: slMFB-DBS appears to have a strong antidepressive effect that increases over the years. Nevertheless, to date, the overall number of patients receiving implantations is limited, and the slMFB-DBS surgical technique seems to have an important impact on the clinical outcome. Further multicentric studies in a larger population are needed to confirm slMFB-DBS clinical outcomes.
RESUMO
OBJECTIVES: Despite the large amount of literature examining the potential influence of subthalamic nucleus deep brain stimulation (STN-DBS) on psychiatric symptoms and cognitive disorders, only a few studies have focused on its effect on personality. We investigated the correlation between total electrical energy delivered (TEED) and the occurrence of depressive traits in patients with Parkinson disease (PD) after one year of DBS. MATERIALS AND METHODS: Our study involved 20 patients with PD (12 women, mean [±SD] age 57.60 ± 7.63 years) who underwent bilateral STN-DBS, whose personality characteristics were assessed using the Minnesota Multiphasic Personality Inventory-2 (MMPI-2), according to the core assessment program for surgical interventional therapies in Parkinson's disease (CAPSIT-PD) procedure. RESULTS: We found that despite a marked improvement in motor functions and quality of life after 12 months, patients showed a significant increase in MMPI-2 subscales for depression (D scale and Depression scale) and in other content component scales (low self-esteem, work interference, and negative treatment indicators). Interestingly, only the TEED on the right side was inversely correlated with the changes in scale D (rs = -0.681, p = 0.007), whereas depressive traits did not correlate with disease duration, levodopa equivalent daily dose (LEDD) reduction, patient's age, or severity of motor symptoms. CONCLUSIONS: Our preliminary observations indicate that despite the excellent motor outcome and general improvement in quality of life, DBS treatment can result in patients poorly adjusting to their personal, familiar, and socio-professional life. Different influences and multiple factors (such as TEED, intra/postsurgical procedure, coping mechanisms, and outcome expectations) may affect depressive traits. Further advances are expected to improve stimulation methods.
Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estimulação Encefálica Profunda/métodos , Levodopa , Doença de Parkinson/terapia , Doença de Parkinson/cirurgia , Personalidade , Qualidade de Vida , Resultado do Tratamento , MasculinoRESUMO
Object: To investigate those parameters affecting early and follow-up functional outcomes in patients undergoing resection of meningiomas and to design a dedicated predictive score, the Milan Bio(metric)-Surgical Score (MBSS) is hereby presented. Methods: Patients undergoing transcranial surgery for intracranial meningiomas were included. The most significant parameters in the regression analyses were implemented in a patient stratification score and were validated by testing its classification consistency with a clinical−radiological grading scale (CRGS), Milan complexity scale (MCS), and Charlson Comorbidity Index (CCI) scores. Results: The ASA score, Frailty index, skull base and posterior cranial fossa locations, a diameter of >25 mm, and the absence of a brain−tumour interface were predictive of early post-operative deterioration and were collected in MBSS Part A (AUC: 0.965; 95%C.I. 0.890−1.022), while the frailty index, posterior cranial fossa location, a diameter of >25 mm, a edema/tumour volume index of >2, dural sinus invasion, DWI hyperintensity, and the absence of a brain−tumour interface were predictive of a long-term unfavourable outcome and were collected in MBSS Part B (AUC: 0.877; 95%C.I. 0.811−0.942). The score was consistent with CRGS, MCS, and CCI. Conclusion: Patients' multi-domain evaluation and the implementation of frailty indexes might help predict the perioperative complexity of cases; the functional, clinical, and neurological early outcomes; survival; and overall QoL after surgery.
RESUMO
Background: Neuroimaging differentiation of glioblastoma, primary central nervous system lymphoma (PCNSL) and solitary brain metastasis (BM) remains challenging in specific cases showing similar appearances or atypical features. Overall, advanced MRI protocols have high diagnostic reliability, but their limited worldwide availability, coupled with the overlapping of specific neuroimaging features among tumor subgroups, represent significant drawbacks and entail disparities in the planning and management of these oncological patients. Objective: To evaluate the classification performance metrics of a deep learning algorithm trained on T1-weighted gadolinium-enhanced (T1Gd) MRI scans of glioblastomas, atypical PCNSLs and BMs. Materials and Methods: We enrolled 121 patients (glioblastoma: n=47; PCNSL: n=37; BM: n=37) who had undergone preoperative T1Gd-MRI and histopathological confirmation. Each lesion was segmented, and all ROIs were exported in a DICOM dataset. The patient cohort was then split in a training and hold-out test sets following a 70/30 ratio. A Resnet101 model, a deep neural network (DNN), was trained on the training set and validated on the hold-out test set to differentiate glioblastomas, PCNSLs and BMs on T1Gd-MRI scans. Results: The DNN achieved optimal classification performance in distinguishing PCNSLs (AUC: 0.98; 95%CI: 0.95 - 1.00) and glioblastomas (AUC: 0.90; 95%CI: 0.81 - 0.97) and moderate ability in differentiating BMs (AUC: 0.81; 95%CI: 0.70 - 0.95). This performance may allow clinicians to correctly identify patients eligible for lesion biopsy or surgical resection. Conclusion: We trained and internally validated a deep learning model able to reliably differentiate ambiguous cases of PCNSLs, glioblastoma and BMs by means of T1Gd-MRI. The proposed predictive model may provide a low-cost, easily-accessible and high-speed decision-making support for eligibility to diagnostic brain biopsy or maximal tumor resection in atypical cases.
RESUMO
OBJECTIVE: To assess organizational and technical difficulties of neurosurgical procedures during the coronavirus disease 2019 (COVID-19) pandemic and their possible impact on survival and functional outcome and to evaluate virological exposure risk of medical personnel. METHODS: Data for all urgent surgical procedures performed in the COVID-19 operating room were prospectively collected. Preoperative and postoperative variables included demographics, pathology, Karnofsky performance status (KPS) and neurological status at admission, type and duration of surgical procedures, length of stay, postoperative KPS and functional outcome comparison, and destination at discharge. We defined 5 classes of pathologies (traumatic, oncological, vascular, infection, hydrocephalus) and 4 surgical categories (burr hole, craniotomy, cerebrospinal fluid shunting, spine surgery). Postoperative SARS-CoV-2 infection was checked in all the operators. RESULTS: We identified 11 traumatic cases (44%), 4 infections (16%), 6 vascular events (24%), 2 hydrocephalus conditions (8%), and 2 oncological cases (8%). Surgical procedures included 11 burr holes (44%), 7 craniotomies (28%), 6 cerebrospinal fluid shunts (24%), and 1 spine surgery (4%). Mean patient age was 57.8 years. The most frequent clinical presentation was coma (44 cases). Mean KPS score at admission was 20 ± 10, mean surgery duration was 85 ± 63 minutes, and mean length of stay was 27 ± 12 days. Mean KPS score at discharge was 35 ± 25. Outcome comparison showed improvement in 16 patients. Four patients died. Mean follow-up was 6 ± 3 months. None of the operators developed postoperative SARS-CoV-2 infection. CONCLUSIONS: Standardized protocols are mandatory to guarantee a high standard of care for emergency and urgent surgeries during the COVID-19 pandemic. Personal protective equipment affects maneuverability, dexterity, and duration of interventions without affecting survival and functional outcome.