Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
5.
Adv Mater ; 36(15): e2311043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190762

RESUMO

The inherent immune and metabolic tumor microenvironment (TME) of most solid tumors adversely affect the antitumor efficacy of various treatments, which is an urgent issue to be solved in clinical cancer therapy. In this study, a mitochondrial localized in situ self-assembly system is constructed to remodel the TME by improving immunogenicity and disrupting the metabolic plasticity of cancer cells. The peptide-based drug delivery system can be pre-assembled into nanomicelles in vitro and form functional nanofibers on mitochondria through a cascade-responsive process involving reductive release, targeted enrichment, and in situ self-assembly. The organelle-specific in situ self-assemblyeffectively switches the role of mitophagy from pro-survival to pro-death, which finally induces intense endoplasmic reticulum stress and atypical type II immunogenic cell death. Disintegration of the mitochondrial ultrastructure also impedes the metabolic plasticity of tumor cells, which greatly promotes the immunosuppresive TME remodeling into an immunostimulatory TME. Ultimately, the mitochondrial localized in situ self-assembly system effectively suppresses tumor metastases, and converts cold tumors into hot tumors with enhanced sensitivity to radiotherapy and immune checkpoint blockade therapy. This study offers a universal strategy for spatiotemporally controlling supramolecular self-assembly on sub-organelles to determine cancer cell fate and enhance cancer therapy.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Diferenciação Celular , Sistemas de Liberação de Medicamentos , Morte Celular Imunogênica , Microambiente Tumoral , Linhagem Celular Tumoral , Imunoterapia
6.
BMC Genomics ; 24(1): 766, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087211

RESUMO

BACKGROUND: Sea cucumbers exhibit a remarkable ability to regenerate damaged or lost tissues and organs, making them an outstanding model system for investigating processes and mechanisms of regeneration. They can also reproduce asexually by transverse fission, whereby the anterior and posterior bodies can regenerate independently. Despite the recent focus on intestinal regeneration, the molecular mechanisms underlying body wall regeneration in sea cucumbers still remain unclear. RESULTS: In this study, transverse fission was induced in the tropical sea cucumber, Holothuria leucospilota, through constrainment using rubber bands. Histological examination revealed the degradation and loosening of collagen fibers on day-3, followed by increased density but disorganization of the connective tissue on day-7 of regeneration. An Illumina transcriptome analysis was performed on the H. leucospilota at 0-, 3- and 7-days after artificially induced fission. The differential expression genes were classified and enriched by GO terms and KEGG database, respectively. An upregulation of genes associated with extracellular matrix remodeling was observed, while a downregulation of pluripotency factors Myc, Klf2 and Oct1 was detected, although Sox2 showed an upregulation in expression. In addition, this study also identified progressively declining expression of transcription factors in the Wnt, Hippo, TGF-ß, and MAPK signaling pathways. Moreover, changes in genes related to development, stress response, apoptosis, and cytoskeleton formation were observed. The localization of the related genes was further confirmed through in situ hybridization. CONCLUSION: The early regeneration of H. leucospilota body wall is associated with the degradation and subsequent reconstruction of the extracellular matrix. Pluripotency factors participate in the regenerative process. Multiple transcription factors involved in regulating cell proliferation were found to be gradually downregulated, indicating reduced cell proliferation. Moreover, genes related to development, stress response, apoptosis, and cell cytoskeleton formation were also involved in this process. Overall, this study provides new insights into the mechanisms of whole-body regeneration and uncover potential cross-species regenerative-related genes.


Assuntos
Holothuria , Pepinos-do-Mar , Animais , Pepinos-do-Mar/genética , Holothuria/genética , Regeneração/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/genética
7.
Mar Biotechnol (NY) ; 25(6): 1110-1122, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853250

RESUMO

The sea cucumber Holothuria leucospilota is an economically and ecologically important tropical species. Following development into juveniles, H. leucospilota undergoes a color change from white to black, involving a pigmentation process for over a period of several months. In this study, a combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and Next-Generation sequencing (NGS) were employed to investigate the changes in metabolomic and transcriptomic profiles during pigmentation in H. leucospilota juveniles. The metabolomic analysis identified a total of 341 metabolites, of which 52 were found to be differentially regulated (P < 0.05 and VIP > 1), with 27 being upregulated in white individuals and 25 in black individuals. Additionally, 632 differentially expressed genes (DEGs) were identified, with 380 genes upregulated in white samples and 252 genes upregulated in black samples. Interestingly, the melanin content and tyrosinase transcript levels did not display significant differences between the two groups. Metabolomic data suggested the involvement of the linoleic acid metabolic pathway in pigmentation. Transcriptomic analysis, coupled with realtime PCR validation, revealed a decrease in the transcript levels of digestive enzymes like α-amylase, maltase-glucoamylase, and trehalase after the juveniles changed to black. Furthermore, the mRNA expressions of major yolk proteins showed a decline, indicating a shift in the accumulation of protein nutrient sources. Overall, our findings suggest that during the pigmentation process in H. leucospilota, no significant changes were observed in the classical melanin pathway, while notable alterations were observed in their nutritional status. This study provides valuable insights into the regulatory mechanisms of pigmentation in marine organisms.


Assuntos
Holothuria , Pepinos-do-Mar , Humanos , Animais , Pepinos-do-Mar/genética , Holothuria/genética , Estado Nutricional , Transcriptoma , Cromatografia Líquida , Melaninas/genética , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Pigmentação/genética , Metaboloma
8.
Materials (Basel) ; 16(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834723

RESUMO

Flexible electronic films need to be applied in different ambient temperatures. The porous substrate of the composite film enhances air permeability. The lifespan of these composite films is significantly affected by variations in temperature and substrate porosity. To explore the impact of temperature and porosity on the performance of composite films, we developed a 3D deformation detection system utilizing the advanced three-dimensional digital image correlation (3D-DIC) method. This system enabled us to observe and analyze the 3D deformation behaviors of porous polydimethylsiloxane (PDMS) flexible composite films when they are subjected to uniaxial stretching at different temperatures. We proposed employing two parameters, namely the strain fluctuation coefficient (M) and off-plane displacement (w), to characterize the 3D deformation of the films. This holistic characterization of deformation through the combined utilization of parameters M and w held greater significance for composite films compared to the conventional practice of solely measuring mechanical properties like the elastic modulus. Through experimental analysis, we discovered that as the temperature increased, the M value of the film decreased while the w value increased for the same stretching distance. Furthermore, the porosity of the composite film depended on the doping mass ratio of PDMS to deionized water during the fabrication process. Specifically, when the ratio was set at 6:1, the composite film exhibited the smallest M value and w value, and the highest air permeability. Additionally, the 3D deformation behavior remained stable across different temperatures for this specific ratio. Moreover, our findings unveiled a remarkable association between the parameter w and the resistance value of the device. These findings provide valuable insights for optimizing the fabrication process of porous PDMS flexible electronic composite films.

9.
Mar Biotechnol (NY) ; 25(5): 778-789, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37658250

RESUMO

The tropical sea cucumber Holothuria scabra is naturally found in the Indo-West Pacific. However, due to their commercial value, natural H. scabra populations have declined significantly in recent years, resulting in its status as an endangered species. Surveys of H. scabra resource pose a challenge due to its specific characteristics, such as sand-burrowing behavior. To overcome this problem, our study established a convenient and feasible method for assessing H. scabra resources using environmental DNA (eDNA) monitoring technology. First, H. scabra-specific TaqMan primers and probe were designed based on its cox1 gene, followed by the development of an eDNA monitoring method for H. scabra in two separate sea areas (Xuwen and Daya Bay). The method was subsequently employed to investigate the distribution of H. scabra and assess the effects of aquaculture stock enhancement through juvenile releasing in the Weizhou Island sea area. The H. scabra eDNA monitoring approach was found to be more appropriate and credible than traditional methods, and a positive impact of stocking on H. scabra populations was observed. In summary, this is the first report to quantify eDNA concentration in a Holothuroidea species, and it provides a convenient and accurate method for surveying H. scabra resources. This study introduces novel concepts for eDNA-based detection of endangered marine benthic animals and monitoring their population distribution and abundance.


Assuntos
DNA Ambiental , Holothuria , Pepinos-do-Mar , Animais , Holothuria/genética , Pepinos-do-Mar/genética , DNA Ambiental/genética
10.
Materials (Basel) ; 16(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570155

RESUMO

The physical and chemical stability of perovskite films has always been a key issue for their industrialization, which has been extensively studied in terms of materials, environment, and encapsulation. Spin coating is one of the most commonly used methods for the preparation of perovskite films in research. However, little attention has been paid to the deformation state of the substrate when it is fixed by means of adsorption and its impact. In this work, the three-dimensional digital image correlation (3D-DIC) method and hyperspectral technology are used to acquire and analyze the adsorption deformation characteristics of the substrate during spin coating, as well as the resulting inhomogeneity. Plastic and four different thicknesses of float glass (0.2, 0.5, 0.7, 1.1 mm) were selected as substrates, and they were tested separately on two suction cups with different structures. The results show that the plastic and 0.2 mm specimens exhibit obvious strain localization behavior. The distribution and magnitude of the strain are affected by the size of the sucker structure, especially the width of the groove. For glass specimens, this effect shows a nonlinear decrease with increasing substrate thickness. Compared to the strain value, the irregularity of local deformation has a greater impact on the non-uniform distribution of materials. Finally, inhomogeneities in the perovskite films were observed through optical lens and hyperspectral data. Obviously, the deformation of the substrate caused by adsorption should attract the attention of researchers, especially for flexible or rigid substrates with low thickness. This may affect the centrifugal diffusion path of the precursor, causing microstructure inhomogeneity and residual stress, etc.

11.
Adv Mater ; 35(38): e2302916, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37288841

RESUMO

Cancer stem-like cells (CSCs), capable of indefinite self-renewal and differentiation, are considered to be the root cause of tumor radiotherapy (RT) resistance. However, the CSCs-targeted therapy still remains to be a great challenge because they are commonly located in the deep tumor making drugs hard to approach, and their hypoxic and acidic niche can further aggravate radioresistance. Herein, based on the finding that hypoxic CSCs highly express carbonic anhydrase IX (CAIX) on the cell membrane, a CAIX-targeted induced in situ self-assembly system on the surface of CSC is reported to overcome hypoxic CSC-mediated radioresistance. Via the sequential processes of "monomer release-target accumulation-surface self-assembly", the constructed peptide-based drug delivery system (CA-Pt) exhibits the advantages of deep penetration, amplified CAIX inhibition, and enhanced cellular uptake, which greatly relieves the hypoxic and acidic microenvironment to promote the hypoxic CSC differentiation and combines with platinum to boost the RT-inducing DNA damage. In both lung cancer tumor mouse and zebrafish embryo models, CA-Pt treatment can effectively assist RT in suppressing tumor growth and preventing tumor invasion and metastasis. This study uses a surface-induced self-assembly strategy to differentiate hypoxic CSCs, which may provide a universal treatment strategy for overcoming tumor radioresistance.


Assuntos
Neoplasias Pulmonares , Peixe-Zebra , Animais , Camundongos , Linhagem Celular Tumoral , Peptídeos , Diferenciação Celular , Microambiente Tumoral
12.
Adv Healthc Mater ; 12(27): e2301083, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300544

RESUMO

Radiotherapy (RT) can produce a vaccine effect and remodel a tumor microenvironment (TME) by inducing immunogenic cell death (ICD) and inflammation in tumors. However, RT alone is insufficient to elicit a systemic antitumor immune response owing to limited antigen presentation, immunosuppressive microenvironment, and chronic inflammation within the tumor. Here, a novel strategy is reported for the generation of in situ peptide-based nanovaccines via enzyme-induced self-assembly (EISA) in tandem with ICD. As ICD progresses, the peptide Fbp-GD FD FD pY (Fbp-pY), dephosphorylated by alkaline phosphatase (ALP) forms a fibrous nanostructure around the tumor cells, resulting in the capture and encapsulation of the autologous antigens produced by radiation. Utilizing the adjuvant and controlled-release advantages of self-assembling peptides, this nanofiber vaccine effectively increases antigen accumulation in the lymph nodes and cross-presentation by antigen-presenting cells (APCs). In addition, the inhibition of cyclooxygenase 2 (COX-2) expression by the nanofibers promotes the repolarization of M2-macrophages into M1 and reduces the number of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) required for TME remodeling. As a result, the combination of nanovaccines and RT significantly enhances the therapeutic effect on 4T1 tumors compared with RT alone, suggesting a promising treatment strategy for tumor radioimmunotherapy.


Assuntos
Nanofibras , Neoplasias , Vacinas , Humanos , Radioimunoterapia , Morte Celular Imunogênica , Imunoterapia/métodos , Neoplasias/radioterapia , Peptídeos , Inflamação , Microambiente Tumoral , Linhagem Celular Tumoral
13.
Nanoscale ; 15(16): 7502-7509, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017562

RESUMO

Hierarchical self-assembly based on peptides in nature is a multi-component interaction process, providing a broad platform for various bionanotechnological applications. However, the study of controlling the hierarchical structure transformation via the cooperation rules of different sequences is still rarely reported. Herein, we report a novel strategy of achieving higher hierarchical structures through cooperative self-assembly of hydrophobic tripeptides with reverse sequences. We unexpectedly found that Nap-FVY and its reverse sequence Nap-YVF self-assembled into nanospheres, respectively, while their mixture formed nanofibers, obviously exhibiting a low-to-high hierarchical structure transformation. Further, this phenomenon was demonstrated by the other two collocations. The cooperation of Nap-VYF and Nap-FYV afforded the transformation from nanofibers to twisted nanoribbons, and the cooperation of Nap-VFY and Nap-YFV realized the transformation from nanoribbons to nanotubes. The reason may be that the cooperative systems in the anti-parallel ß-sheet conformation created more hydrogen bond interactions and in-register π-π stacking, promoting a more compact molecular arrangement. This work provides a handy approach for controlled hierarchical assembly and the development of various functional bionanomaterials.


Assuntos
Nanofibras , Nanosferas , Nanotubos de Carbono , Peptídeos/química , Nanofibras/química , Estrutura Secundária de Proteína
14.
Proc Natl Acad Sci U S A ; 120(16): e2213512120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036994

RESUMO

Some tropical sea cucumbers of the family Holothuriidae can efficiently repel or even fatally ensnare predators by sacrificially ejecting a bioadhesive matrix termed the Cuvierian organ (CO), so named by the French zoologist Georges Cuvier who first described it in 1831. Still, the precise mechanisms for how adhesiveness genetically arose in CO and how sea cucumbers perceive and transduce danger signals for CO expulsion during defense have remained unclear. Here, we report the first high-quality, chromosome-level genome assembly of Holothuria leucospilota, an ecologically significant sea cucumber with prototypical CO. The H. leucospilota genome reveals characteristic long-repeat signatures in CO-specific outer-layer proteins, analogous to fibrous proteins of disparate species origins, including spider spidroin and silkworm fibroin. Intriguingly, several CO-specific proteins occur with amyloid-like patterns featuring extensive intramolecular cross-ß structures readily stainable by amyloid indicator dyes. Distinct proteins within the CO connective tissue and outer surface cooperate to give the expelled matrix its apparent tenacity and adhesiveness, respectively. Genomic evidence offers further hints that H. leucospilota directly transduces predator-induced mechanical pressure onto the CO surface through mediation by transient receptor potential channels, which culminates in acetylcholine-triggered CO expulsion in part or in entirety. Evolutionarily, innovative events in two distinct regions of the H. leucospilota genome have apparently spurred CO's differentiation from the respiratory tree to a lethal defensive organ against predators.


Assuntos
Holothuria , Pepinos-do-Mar , Animais , Holothuria/genética , Holothuria/química , Holothuria/metabolismo , Proteínas Amiloidogênicas/metabolismo , Adesividade
15.
Acta Biomater ; 164: 447-457, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996995

RESUMO

The acidosis anti-tumor therapy, based on the altered energy metabolism pathway of tumor cells, has been proposed as an attractive method for cancer selective treatment. However, the strategy of inducing tumor acidosis by using a single drug to simultaneously inhibit both lactate efflux and consumption has not been reported yet. Herein, an in situ enzyme-instructed self-assembly (EISA) system was rationally fabricated to induce tumor acidosis apoptosis for cancer selective therapy. Depending on the sequential effect of the in situ EISA system, the targeted drug was successively distributed on the membrane and intracellular, inhibiting MCT4 mediated lactate efflux and mitochondrial tricarboxylic acid (TCA) cycle mediated lactate consumption, respectively. Through the dual obstruction of lactate metabolism to trigger tumor acidosis, the in situ EISA nanomedicine showed selective growth and migration inhibition against cancer cells. In addition, the nanomedicine also displayed a radio-sensitization effect in vitro due to causing the mitochondrial dysfunction, and exhibited a prominent synergistic chemo-radiotherapy anti-tumor performance in vivo. Accordingly, this work demonstrated that the in situ EISA system could endow the LND with sequential-dual effects to induce tumor acidosis, which may provide an enlightening strategy for anticancer drug delivery and cancer selective therapy. STATEMENT OF SIGNIFICANCE: With the help of the sequential effect of in situ EISA , the serial attack of LND against different targets was effectively realized to induce tumor acidosis and combined chemo-radiotherapy, implying the importance of the relationship between structure and function, which could offer a distinctive inspiration for future drug delivery system design and anti-tumor application.


Assuntos
Acidose , Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Apoptose , Lactatos/farmacologia , Lactatos/uso terapêutico , Acidose/tratamento farmacológico , Linhagem Celular Tumoral
16.
Gene ; 851: 147027, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36332838

RESUMO

In birds, vitelline membrane outer layer protein 1 (VMO1) is an exogenous protein that can be absorbed by eggs as a barrier to prevent the mixing of yolk and egg white. However, researches on VMO1 are limited in birds but not other non-avian species until now. In this study, we first identified a novel Vmo1 cDNA (Lv-Vmo1) in Pacific white shrimp (Litopenaeus vannamei), the most important cultured shrimp in the world. We further analyzed its gene organization, phylogenetic relationship and protein structure. The Lv-Vmo1 transcript was specifically expressed in the hepatopancreas without sexual dimorphism. During ovarian development in female, the hepatopancreatic Lv-Vmo1 mRNA levels showed a significant increase. By in situ hybridization, Lv-Vmo1 mRNA was present in three cell types of the hepatopancreas but neither oocytes nor follicle cells of the ovary. In contrast, immunofluorescence revealed that Lv-VMO1 protein was distributed in the cytoplasms of both hepatopancreatic cells and ovarian oocytes. Western blot showed that Lv-VMO1 protein was produced in the hepatopancreas and transported to the ovary via hemolymph circulation. Identification of a species-specific egg-entry guide protein is the key to the receptor-mediated ovarian transduction of cargo, a novel gene editing approach in oviparous animals. This study lays the mechanism for exogenous transport into penaeid shrimp eggs by VMO1, as a foundation for achieving exogenous protein-mediated incorporation into oocytes.


Assuntos
Hepatopâncreas , Penaeidae , Animais , Feminino , Hepatopâncreas/metabolismo , Vitelogênese , Penaeidae/genética , Penaeidae/metabolismo , Ovário/metabolismo , Membrana Vitelina , Filogenia , Oócitos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555118

RESUMO

Ever-increasing consumer demand for sea cucumbers mainly leads to huge damage to wild sea cucumber resources, including Stichopus monotuberculatus, which in turn exerts negative impacts on marine environments due to the lack of ecological functions performed by sea cucumbers. Aquaculture of sea cucumbers is an effective way to meet consumer demand and restore their resources. Unsynchronous growth is a prominent problem in the aquaculture of sea cucumbers which has concealed unelucidated molecular mechanisms until now. In this study, we carried out an integrative analysis of transcriptomics and metabolomics on fast-growing (SMF) and slow-growing (SMS) groups of S. monotuberculatus cultured in the same environmental conditions. The results revealed that a total of 2054 significantly differentially expressed genes (DEGs) were identified, which are mainly involved in fat digestion and absorption, histidine metabolism, arachidonic acid metabolism, and glutathione metabolism. 368 differential metabolites (DMs) were screened out between the SMF group and the SMS group; these metabolites are mainly involved in glycerophospholipid metabolism, purine metabolism, biosynthesis of unsaturated fatty acids, pyrimidine metabolism, arachidonic acid metabolism, and other metabolic pathways. The integrative analysis of transcriptomics and metabolomics of S. monotuberculatus suggested that the SMF group had a higher capacity for lipid metabolism and protein synthesis, and had a more frequent occurrence of apoptosis events, which are likely to be related to coping with environmental stresses. The results of this study provide potential values for the aquaculture of sea cucumbers which may promote their resource enhancement.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Stichopus/metabolismo , Pepinos-do-Mar/genética , Transcriptoma , Metabolômica , Ácidos Araquidônicos/metabolismo
18.
Cells ; 11(19)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36231051

RESUMO

Radiation-induced skin wound/dermatitis is one of the common side effects of radiotherapy or interventional radiobiology. Gingiva-derived mesenchymal stem cells (GMSCs) were indicated to have therapeutic potentials in skin diseases. However, stem cells are prone to spread and difficult to stay in the skin for a long time, limiting their curative effects and application. This study investigated the therapeutic efficacy of Nap-GDFDFpDY (pY-Gel) self-assembled peptide hydrogel-encapsulated GMSCs to treat 137Cs γ-radiation-induced skin wounds in mice. The effects were evaluated by skin damage score, hind limb extension measurement and histological and immunohistochemical analysis. In vivo studies showed that pY-Gel self-assembled peptide hydrogel-encapsulated GMSCs could effectively improve wound healing in irradiated skin tissues. In addition, it was found that GMSCs conditioned medium (CM) could promote the proliferation, migration and DNA damage repair ability of skin cells after irradiation in human keratinocyte cell line HaCaT and normal human dermal fibroblasts (HFF). Mechanistically, GMSCs-CM can promote the expression of epidermal growth factor receptor (EGFR), signal transducers and activators of transcription 3 (STAT3) and matrix metalloproteinases (MMPs), suggesting that activation of the EGFR/STAT3 signaling pathway may be involved in the repair of skin cells after exposure to radiations. In conclusion, pY-Gel self-assembled peptide hydrogel-encapsulated GMSCs have a beneficial therapeutic effect on radiation-induced cutaneous injury and may serve as a basis of novel cells therapeutic approach.


Assuntos
Células-Tronco Mesenquimais , Lesões por Radiação , Animais , Meios de Cultivo Condicionados/farmacologia , Receptores ErbB/metabolismo , Gengiva , Humanos , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Lesões por Radiação/metabolismo , Lesões por Radiação/terapia
19.
ACS Nano ; 16(9): 14644-14657, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36048539

RESUMO

As it is closely associated with tumor proliferation, metastasis, and the immunosuppressive microenvironment, the dysfunctional Hippo pathway has become an extremely attractive target for treating multiple cancers. However, to date, the corresponding chemotherapeutic nanomedicines have not been developed. Herein, a supramolecular self-delivery nanomedicine with in situ transforming capacity was tailor-constructed for Hippo-pathway restoration, and its inhibitory effect against tumor growth and metastasis was investigated in a highly aggressive triple-negative breast cancer (TNBC) model. Stimulated by overexpressed glutathione (GSH) and esterase in cancer cells, the self-assembled nanomedicine transformed from inactive nanospheres to active nanofibers conjugating tyrosvaline and spatiotemporally synchronously released the covalently linked flufenamic acid in situ, together activating the maladjusted Hippo pathway by simultaneously acting on different targets upstream and downstream. The transcriptional expression of Yes-associated protein (YAP) and related growth-promoted genes were significantly reduced, finally significantly repressing the proliferation and metastasis of cancer cells. Additionally, the Hippo-pathway restoration showed an excellent radiosensitization effect, making the targeted therapy combined with radiotherapy display a prominent synergistic in vivo anticancer effect against TNBC. This work reports a specifically designed smart nanomedicine to restore the function of the Hippo pathway and sensitize radiotherapy, providing an attractive paradigm for targeted drug delivery and cancer combination therapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Esterases/metabolismo , Esterases/uso terapêutico , Ácido Flufenâmico/uso terapêutico , Glutationa/metabolismo , Via de Sinalização Hippo , Humanos , Nanomedicina , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral , Proteínas de Sinalização YAP
20.
Sensors (Basel) ; 22(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36081046

RESUMO

The Micro-Electro-Mechanical System (MEMS) gyroscope has been widely used in various fields, but the output of the MEMS gyroscope has strong nonlinearity, especially in the range of tiny angular velocity. This paper proposes an adaptive Fourier series compensation method (AFCM) based on the steepest descent method and Fourier series residual correction. The proposed method improves the Fourier series fitting method according to the output characteristics of the MEMS gyroscope under tiny angular velocity. Then, the optimal weights are solved by the steepest descent method, and finally the fitting residuals are corrected by Fourier series to further improve the compensation accuracy. In order to verify the effectiveness of the proposed method, the angle velocity component of the earth's rotation is used as the input of the MEMS gyroscope to obtain the output of the MEMS gyroscope under tiny angular velocities. Experimental characterization resulted in an input angular velocity between -0.0036°/s and 0.0036°/s, compared with the original data, the polynomial compensation method, and the Fourier series compensation method, and the output nonlinearity of the MEMS gyroscope was reduced from 1150.87 ppm, 641.13 ppm, and 250.55 ppm to 68.89 ppm after AFCM compensation, respectively, which verifies the effectiveness and superiority of the proposed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA