Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 149(11): 3263, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38738731

RESUMO

Correction for 'A compact and high-performance setup of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D)' by Lin Li et al., Analyst, 2024, https://doi.org/10.1039/d4an00354c.

2.
Analyst ; 149(10): 3034-3040, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38624147

RESUMO

Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) has the advantages of high throughput (simultaneous detection of multiple ions), high separation efficiency (higher than 105 theoretical plates) and rapid analysis capability (less than 5 min for common inorganic ions). A compact CE-C4D system is ideal for water quality control and on-site analysis. It is suitable not only for common cations (e.g. Na+, K+, Li+, NH4+, Ca2+, etc.) and anions (e.g. Cl-, SO42-, BrO3-, etc.) but also for some ions (e.g. lanthanide ions, Pb2+, Cd2+, etc.) that require complex derivatization procedures to be detected by ion chromatography (IC). However, an obvious limitation of the CE-C4D method is that its sensitivity (e.g. 0.3-1 µM for common inorganic ions) is often insufficient for trace analysis (e.g. 1 ppb or 20 nM level for common inorganic ions) without preconcentration. For this technology to become a powerful and routine analytical technique, the system should be made compact while maintaining trace analysis sensitivity. In this study, we developed an all-in-one version of the CE-C4D instrument with custom-made modular components to make it a convenient, compact and high-performance system. The system was designed using direct digital synthesis (DDS) technology to generate programmable sinusoidal waveforms with any frequency for excitation, a kilovolt high-voltage power supply for capillary electrophoresis separation, and an "effective" differential C4D cell with a low-noise circuitry for high-sensitivity detection. We characterized the system with different concentrations of Cs+, and even a low concentration of 20 nM was detectable without preconcentration. Moreover, the optimized CE-C4D setup was applied to analyse mixed ions at a trace concentration of 200 nM with excellent signal-to-noise ratios. In typical applications, the limits of detection based on the 3σ criterion (without baseline filtering) were 9, 10, 24, 5, and 12 nM for K+, Cs+, Li+, Ca2+, and Mg2+, respectively, and about 7, 6, 6 and 6 nM for Br-, ClO4-, BrO3- and SO42-, respectively. Finally, the setup was also applied for the analysis of all 14 lanthanide ions and rare-earth minerals, and it showed an improvement in sensitivity by more than 25 times.

3.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284812

RESUMO

Quartz tuning forks and qPlus-based force sensors offer an alternative approach to silicon cantilevers for investigating tip-sample interactions in scanning probe microscopy. The high-quality factor (Q) and stiffness of these sensors prevent the tip from jumping to the contact, even at sub-nanometer amplitude. The qPlus configuration enables simultaneous scanning tunneling microscopy and atomic force microscopy, achieving spatial resolution and spectroscopy at the subatomic level. However, to enable precise measurement of tip-sample interaction forces, confidence in these measurements is contingent upon the accurate calibration of the spring constant and oscillation amplitude of the sensor. Here, we have developed a method called astigmatic displacement microscopy with picometer sensitivity.

4.
Zhonghua Nan Ke Xue ; 26(10): 926-933, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33382226

RESUMO

OBJECTIVE: To investigate the relationship of electromagnetic radiation (EMR) from 900 MHz cellphone frequency with testicular oxidative damage and its influence on the Prdx2 protein expression in the rat testis, and to explore the mechanism of Guilingji Capsules (GC) alleviating oxidative damage to the testis tissue. METHODS: Fifty healthy SD male rats were randomly divided into five groups of equal number, sham-EMR, 4-h EMR, 8-h EMR, 4-h EMR+GC and 8-h EMR+GC and exposed to 900 MHz EMR (370 µW/cm2) for 0, 4 or 8 hours daily for 15 successive days. The rats of the latter two groups were treated intragastrically with GC suspension and those of the first three groups with pure water after exposure to EMR each day. After 15 days of exposure and treatment, all the rats were sacrificed and their testis tissue collected for observation of the histomorphological and ultrastructural changes by HE staining and transmission electron microscopy, measurement of the levels of serum glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) with thiobarbiuric acid and determination of the Prdx2 protein expression by immunohistochemistry and Western blot. RESULTS: Compared with the rats in the sham-EMR group, those in the 4-h and 8-h EMR groups showed different degrees of histomorphological and ultrastructural changes in the testis tissue, significantly decreased levels of GSH (ï¼»80.62 ± 10.99ï¼½ vs ï¼»69.58 ± 4.18ï¼½ and ï¼»66.17 ± 8.45ï¼½ mg/L, P < 0.05) and SOD (ï¼»172.29 ± 10.98ï¼½ vs ï¼»158.92 ± 6.46ï¼½ and ï¼»148.91 ± 8.60ï¼½ U/ml, P < 0.05) and increased level of MDA (ï¼»7.51 ± 1.73ï¼½ vs ï¼»9.84 ± 1.03ï¼½ and ï¼»11.22 ± 2.13ï¼½ umol/ml, P < 0.05), even more significantly in the 8-h than in the 4-h EMR group (P < 0.05). In comparison with the sham-EMR group, the expression of the Prdx2 protein was markedly downregulated in the 4-h and 8-h EMR groups (0.56 ± 0.03 vs 0.49 ± 0.03, 0.21 ± 0.01, P < 0.05), but again upregulated in the 4-h and 8-h EMR+GC groups (0.55±0.03 and 0.37±0.04) (P < 0.05). CONCLUSIONS: Electromagnetic radiation from cellphones can cause ultrastructural damage to the testis tissue of male rats, while Guilingji Capsules can alleviate it, presumably by upregulating the Prdx2 protein expression in the testis tissue and reducing testicular oxidative damage.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Radiação Eletromagnética , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Lesões Experimentais por Radiação/tratamento farmacológico , Testículo , Animais , Cápsulas , Telefone Celular , Glutationa/sangue , Masculino , Malondialdeído/sangue , Microscopia Eletrônica de Transmissão , Ratos , Superóxido Dismutase/sangue , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Substâncias Reativas com Ácido Tiobarbitúrico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA