Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(2): 3176-3188, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34981922

RESUMO

All-inorganic perovskite quantum dots (PQDs), which possess outstanding photophysical properties, are regarded as promising materials for optoelectronic applications. However, the poor light conversion efficiency and severe stability problem hinder their widespread applications. In this work, a novel encapsulation strategy is developed through the in situ growth of CsPbX3 PQDs in presynthesized mesoporous cerium-based metal organic frameworks (Ce-MOFs) and further silane hydrolysis-encapsulation, generating stable CsPbX3@Ce-MOF@SiO2 composites with greatly enhanced light conversion efficiency. Moreover, the simulation results suggest that the pore boundary of Ce-MOFs has a strong waveguide effect on the incident PQD light, constraining PQD light inside the bodies of Ce-MOFs and suppressing reabsorption losses, thus increasing the overall light conversion efficiency of PQDs. Meanwhile, the Ce-MOF@SiO2 protective shell effectively improves the stability by blocking internally embedded PQDs from the harmful external environment. Further, the obtained white-light-emitting diode shows an ultrahigh luminous efficiency of 87.8 lm/W, which demonstrates their great potential in optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA