Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Infect Drug Resist ; 17: 1185-1198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560706

RESUMO

Background and Aim: Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a complicated syndrome with high short-term mortality. Effective biomarkers are required for its early diagnosis and prognosis. This study aimed to determine the diagnostic and prognostic value of thrombomodulin (TM) in patients with HBV-ACLF. Methods: The expression of TM during disease progression was evaluated through transcriptomics analysis. The plasma TM concentrations of 393 subjects with HBV-ACLF (n=213), acute-on-chronic hepatic dysfunction (ACHD, n=50), liver cirrhosis (LC, n=50) or chronic hepatitis B (CHB, n=50), and normal controls (NC, n=30) from a prospective multicenter cohort, were measured to verify the diagnostic and prognostic significance of plasma TM for HBV-ACLF patients by enzyme-linked immunosorbent assay (ELISA). Results: TM mRNA was highly expressed in the HBV-ACLF group compared with the ACHD group (AUROC=0.710). High expression of TM predicted poor prognosis for HBV-ACLF patients at 28/90 days (AUROCs=0.823/0.788). Functional analysis showed that TM was significantly associated with complement activation and the inflammatory signaling pathway. External validation confirmed its high diagnostic accuracy for HBV-ACLF patients (AUROC=0.796). Plasma TM concentrations were correlated with organ failure, including coagulation and kidney failure. Plasma TM concentrations showed a potential prognostic value for 28-day mortality rates (AUROC=0.702). Risk stratification specifically identified HBV-ACLF patients with a high risk of death as having a plasma TM concentration of ≥8.4 ng/mL. Conclusion: This study reveals that the plasma TM can be a candidate biomarker for early diagnosis and prognosis of HBV-ACLF, and might play a vital role in coagulation and inflammation.

2.
BMC Med ; 22(1): 95, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439091

RESUMO

BACKGROUND: The key role of thrombospondin 1 (THBS1) in the pathogenesis of acute-on-chronic liver failure (ACLF) is unclear. Here, we present a transcriptome approach to evaluate THBS1 as a potential biomarker in ACLF disease pathogenesis. METHODS: Biobanked peripheral blood mononuclear cells (PBMCs) from 330 subjects with hepatitis B virus (HBV)-related etiologies, including HBV-ACLF, liver cirrhosis (LC), and chronic hepatitis B (CHB), and normal controls (NC) randomly selected from the Chinese Group on the Study of Severe Hepatitis B (COSSH) prospective multicenter cohort underwent transcriptome analyses (ACLF = 20; LC = 10; CHB = 10; NC = 15); the findings were externally validated in participants from COSSH cohort, an ACLF rat model and hepatocyte-specific THBS1 knockout mice. RESULTS: THBS1 was the top significantly differentially expressed gene in the PBMC transcriptome, with the most significant upregulation in ACLF, and quantitative polymerase chain reaction (ACLF = 110; LC = 60; CHB = 60; NC = 45) was used to verify that THBS1 expression corresponded to ACLF disease severity outcome, including inflammation and hepatocellular apoptosis. THBS1 showed good predictive ability for ACLF short-term mortality, with an area under the receiver operating characteristic curve (AUROC) of 0.8438 and 0.7778 at 28 and 90 days, respectively. Enzyme-linked immunosorbent assay validation of the plasma THBS1 using an expanded COSSH cohort subjects (ACLF = 198; LC = 50; CHB = 50; NC = 50) showed significant correlation between THBS1 with ALT and γ-GT (P = 0.01), and offered a similarly good prognostication predictive ability (AUROC = 0.7445 and 0.7175) at 28 and 90 days, respectively. ACLF patients with high-risk short-term mortality were identified based on plasma THBS1 optimal cut-off value (< 28 µg/ml). External validation in ACLF rat serum and livers confirmed the functional association between THBS1, the immune response and hepatocellular apoptosis. Hepatocyte-specific THBS1 knockout improved mouse survival, significantly repressed major inflammatory cytokines, enhanced the expression of several anti-inflammatory mediators and impeded hepatocellular apoptosis. CONCLUSIONS: THBS1 might be an ACLF disease development-related biomarker, promoting inflammatory responses and hepatocellular apoptosis, that could provide clinicians with a new molecular target for improving diagnostic and therapeutic strategies.


Assuntos
Insuficiência Hepática Crônica Agudizada , Trombospondina 1 , Animais , Humanos , Camundongos , Ratos , Biomarcadores , Vírus da Hepatite B , Inflamação , Leucócitos Mononucleares , Cirrose Hepática , Estudos Prospectivos , Trombospondina 1/genética
3.
Neuron ; 112(3): 441-457.e6, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37992714

RESUMO

Social isolation is a risk factor for multiple mood disorders. Specifically, social isolation can remodel the brain, causing behavioral abnormalities, including sociability impairments. Here, we investigated social behavior impairment in mice following chronic social isolation stress (CSIS) and conducted a screening of susceptible brain regions using functional readouts. CSIS enhanced synaptic inhibition in the anterior cingulate cortex (ACC), particularly at inhibitory synapses of cholecystokinin (CCK)-expressing interneurons. This enhanced synaptic inhibition in the ACC was characterized by CSIS-induced loss of presynaptic cannabinoid type-1 receptors (CB1Rs), resulting in excessive axonal calcium influx. Activation of CCK-expressing interneurons or conditional knockdown of CB1R expression in CCK-expressing interneurons specifically reproduced social impairment. In contrast, optogenetic activation of CB1R or administration of CB1R agonists restored sociability in CSIS mice. These results suggest that the CB1R may be an effective therapeutic target for preventing CSIS-induced social impairments by restoring synaptic inhibition in the ACC.


Assuntos
Canabinoides , Giro do Cíngulo , Animais , Masculino , Camundongos , Canabinoides/metabolismo , Canabinoides/farmacologia , Giro do Cíngulo/metabolismo , Interneurônios/fisiologia , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Isolamento Social , Sinapses/fisiologia
4.
JHEP Rep ; 5(9): 100848, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37583946

RESUMO

Background & Aims: HBV-related acute-on-chronic liver failure (HBV-ACLF) is a complex syndrome associated with high short-term mortality. This study aims to reveal the molecular basis and identify novel HBV-ACLF biomarkers. Methods: Seventy patients with HBV-ACLF and different short-term (28 days) outcomes underwent transcriptome sequencing using peripheral blood mononuclear cells. Candidate biomarkers were confirmed in two external cohorts using ELISA. Results: Cellular composition analysis with peripheral blood mononuclear cell transcriptomics showed that the proportions of monocytes, T cells and natural killer cells were significantly correlated with 28-day mortality. Significant metabolic dysregulation of carbohydrate, energy and amino acid metabolism was observed in ACLF non-survivors. V-set and immunoglobulin domain-containing 4 (VSIG4) was the most robust predictor of patient survival (adjusted p = 1.74 × 10-16; variable importance in the projection = 1.21; AUROC = 0.89) and was significantly correlated with pathways involved in the progression of ACLF, including inflammation, oxidative phosphorylation, tricarboxylic acid cycle and T-cell activation/differentiation. Plasma VSIG4 analysis externally validated its diagnostic value in ACLF (compared with chronic liver disease and healthy groups, AUROC = 0.983). The prognostic performance for 28-/90-day mortality (AUROCs = 0.769/0.767) was comparable to that of three commonly used scores (COSSH-ACLFs, 0.867/0.884; CLIF-C ACLFs, 0.840/0.835; MELD-Na, 0.710/0.737). Plasma VSIG4 level, as an independent predictor, could be used to improve the prognostic performance of clinical scores. Risk stratification based on VSIG4 expression levels (>122 µg/ml) identified patients with ACLF at a high risk of death. The generality of VSIG4 in other etiologies was validated. Conclusions: This study reveals that immune-metabolism disorder underlies poor ACLF outcomes. VSIG4 may be helpful as a diagnostic and prognostic biomarker in clinical practice. Impact and implications: Acute-on-chronic liver failure (ACLF) is a lethal clinical syndrome associated with high mortality. We found significant immune cell alterations and metabolic dysregulation that were linked to high mortality in patients with HBV-ACLF based on transcriptomics using peripheral blood mononuclear cells. We identified VSIG4 (V-set and immunoglobulin domain-containing 4) as a diagnostic and prognostic biomarker in ACLF, which could specifically identify patients with ACLF at a high risk of death.

5.
Bioact Mater ; 26: 452-464, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37035760

RESUMO

Developing functional ductal organoids (FDOs) is essential for liver regenerative medicine. We aimed to construct FDOs with biliary tree networks in rat decellularized liver scaffolds (DLSs) with primary cholangiocytes isolated from mouse bile ducts. The developed FDOs were dynamically characterized by functional assays and metabolomics for bioprocess clarification. FDOs were reconstructed in DLSs retaining native structure and bioactive factors with mouse primary cholangiocytes expressing enriched biomarkers. Morphological assessment showed that biliary tree-like structures gradually formed from day 3 to day 14. The cholangiocytes in FDOs maintained high viability and expressed 11 specific biomarkers. Basal-apical polarity was observed at day 14 with immunostaining for E-cadherin and acetylated α-tubulin. The rhodamine 123 transport assay and active collection of cholyl-lysyl-fluorescein exhibited the specific functions of bile secretion and transportation at day 14 compared to those in monolayer and hydrogel culture systems. The metabolomics analysis with 1075 peak pairs showed that serotonin, as a key molecule of the tryptophan metabolism pathway linked to biliary tree reconstruction, was specifically expressed in FDOs during the whole period of culture. Such FDOs with biliary tree networks and serotonin expression may be applied for disease modeling and drug screening, which paves the way for future clinical therapeutic applications.

6.
J Med Virol ; 95(4): e28710, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975761

RESUMO

Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a syndrome with high short-term mortality. The mechanism of the transcription factor ETS2 in ACLF remains unclear. This study aimed to clarify the molecular basis of ETS2 in ACLF pathogenesis. Peripheral blood mononuclear cells from patients with HBV-ACLF (n = 50) were subjected to RNA sequencing. Transcriptome analysis showed that ETS2 expression was significantly higher in ACLF patients than in patients with chronic liver diseases and healthy subjects (all p < 0.001). Area-under-ROC analysis of ETS2 demonstrated high values for the prediction of 28-/90-day mortality in ACLF patients (0.908/0.773). Significantly upregulated signatures of the innate immune response (monocytes/neutrophils/inflammation-related pathways) were observed in ACLF patients with high ETS2 expression. Myeloid-specific ETS2 deficiency in liver failure mice resulted in deterioration of biofunctions and increased expression of pro-inflammatory cytokines (IL-6/IL-1ß/TNF-α). Knockout of ETS2 in macrophages confirmed the downregulation of IL-6 and IL-1ß caused by both HMGB1 and lipopolysaccharide, and an NF-κB inhibitor reversed the suppressive effect of ETS2. ETS2 is a potential prognostic biomarker of ACLF patients that alleviates liver failure by downregulating the HMGB1-/lipopolysaccharide-triggered inflammatory response and may serve as a therapeutic target for ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Proteína HMGB1 , Hepatite B Crônica , Animais , Camundongos , Insuficiência Hepática Crônica Agudizada/patologia , Vírus da Hepatite B , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Interleucina-6/genética , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , Camundongos Knockout , Prognóstico , Humanos
7.
ACS Biomater Sci Eng ; 9(4): 1940-1951, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36913674

RESUMO

Functional bioengineered livers (FBLs) are promising alternatives to orthotopic liver transplantation. However, orthotopic transplantation of FBLs has not yet been reported. This study aimed to perform the orthotopic transplantation of FBLs in rats subjected to complete hepatectomy. FBLs were developed using rat whole decellularized liver scaffolds (DLSs) with human umbilical vein endothelial cells implanted via the portal vein, and human bone marrow mesenchymal stem cells (hBMSCs) and mouse hepatocyte cell line implanted via the bile duct. FBLs were evaluated in terms of endothelial barrier function, biosynthesis, and metabolism and orthotopically transplanted into rats to determine the survival benefit. The FBLs with well-organized vascular structures exhibited endothelial barrier function, with reduced blood cell leakage. The implanted hBMSCs and hepatocyte cell line were well aligned in the parenchyma of the FBLs. The high levels of urea, albumin, and glycogen in the FBLs indicated biosynthesis and metabolism. Orthotopic transplantation of FBLs achieved a survival time of 81.38 ± 4.263 min in rats (n = 8) subjected to complete hepatectomy, whereas control animals (n = 4) died within 30 min (p < 0.001). After transplantation, CD90-positive hBMSCs and the albumin-positive hepatocyte cell line were scattered throughout the parenchyma, and blood cells were limited within the vascular lumen of the FBLs. In contrast, the parenchyma and vessels were filled with blood cells in the control grafts. Thus, orthotopic transplantation of whole DLS-based FBLs can effectively prolong the survival of rats subjected to complete hepatectomy. In summary, this work was the first to perform the orthotopic transplantation of FBLs, with limited survival benefits, which still has important value for the advancement of bioengineered livers.


Assuntos
Transplante de Fígado , Fígado , Camundongos , Ratos , Animais , Humanos , Fígado/cirurgia , Fígado/fisiologia , Hepatócitos , Células Endoteliais da Veia Umbilical Humana , Albuminas
8.
Liver Int ; 43(6): 1345-1356, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810858

RESUMO

BACKGROUND AND AIMS: Human bone marrow mesenchymal stem cells (hBMSCs) are important for developing a dual-humanized mouse model to clarify disease pathogenesis. We aimed to elucidate the characteristics of hBMSC transdifferentiation into liver and immune cells. METHODS: A single type of hBMSCs was transplanted into immunodeficient Fah-/- Rag2-/- IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF). Liver transcriptional data from the hBMSC-transplanted mice were analysed to identify transdifferentiation with traces of liver and immune chimerism. RESULTS: Mice with FHF were rescued by implanted hBMSCs. Human albumin/leukocyte antigen (HLA) and CD45/HLA double-positive hepatocytes and immune cells were observed in the rescued mice during the initial 3 days. The transcriptomics analysis of liver tissues from dual-humanized mice identified two transdifferentiation phases (cellular proliferation at 1-5 days and cellular differentiation/maturation at 5-14 days) and ten cell lineages transdifferentiated from hBMSCs: human hepatocytes, cholangiocytes, stellate cells, myofibroblasts, endothelial cells and immune cells (T/B/NK/NKT/Kupffer cells). Two biological processes, hepatic metabolism and liver regeneration, were characterized in the first phase, and two additional biological processes, immune cell growth and extracellular matrix (ECM) regulation, were observed in the second phase. Immunohistochemistry verified that the ten hBMSC-derived liver and immune cells were present in the livers of dual-humanized mice. CONCLUSIONS: A syngeneic liver-immune dual-humanized mouse model was developed by transplanting a single type of hBMSC. Four biological processes linked to the transdifferentiation and biological functions of ten human liver and immune cell lineages were identified, which may help to elucidate the molecular basis of this dual-humanized mouse model for further clarifying disease pathogenesis.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Células Endoteliais , Transcriptoma , Camundongos SCID , Fígado/patologia , Células-Tronco Mesenquimais/metabolismo
9.
Lancet Reg Health West Pac ; 32: 100638, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36793753

RESUMO

Background: Liver transplantation (LT) is an effective therapy for acute-on-chronic liver failure (ACLF) but is limited by organ shortages. We aimed to identify an appropriate score for predicting the survival benefit of LT in HBV-related ACLF patients. Methods: Hospitalized patients with acute deterioration of HBV-related chronic liver disease (n = 4577) from the Chinese Group on the Study of Severe Hepatitis B (COSSH) open cohort were enrolled to evaluate the performance of five commonly used scores for predicting the prognosis and transplant survival benefit. The survival benefit rate was calculated to reflect the extended rate of the expected lifetime with vs. without LT. Findings: In total, 368 HBV-ACLF patients received LT. They showed significantly higher 1-year survival than those on the waitlist in both the entire HBV-ACLF cohort (77.2%/52.3%, p < 0.001) and the propensity score matching cohort (77.2%/27.6%, p < 0.001). The area under the receiver operating characteristic curve (AUROC) showed that the COSSH-ACLF II score performed best (AUROC 0.849) at identifying the 1-year risk of death on the waitlist and best (AUROC 0.864) at predicting 1-year outcome post-LT (COSSH-ACLFs/CLIF-C ACLFs/MELDs/MELD-Nas: AUROC 0.835/0.825/0.796/0.781; all p < 0.05). The C-indexes confirmed the high predictive value of COSSH-ACLF IIs. Survival benefit rate analyses showed that patients with COSSH-ACLF IIs 7-10 had a higher 1-year survival benefit rate from LT (39.2%-64.3%) than those with score <7 or >10. These results were prospectively validated. Interpretation: COSSH-ACLF IIs identified the risk of death on the waitlist and accurately predicted post-LT mortality and survival benefit for HBV-ACLF. Patients with COSSH-ACLF IIs 7-10 derived a higher net survival benefit from LT. Funding: This study was supported by the National Natural Science Foundation of China (No. 81830073, No. 81771196) and the National Special Support Program for High-Level Personnel Recruitment (Ten-thousand Talents Program).

10.
Clin Gastroenterol Hepatol ; 21(3): 681-693, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35337983

RESUMO

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is a life-threatening syndrome with rapid progression. This study aimed to develop and validate a prognostic score to predict the onset of ACLF in hepatitis B virus (HBV) etiology. METHODS: The prospective clinical data of 1373 patients with acute deterioration of HBV-related chronic liver disease were used to identify clinical characteristics and develop a prognostic score for the onset of ACLF. RESULTS: Of the patients assessed using the Chinese Group on the Study of Severe Hepatitis B (COSSH)-ACLF criteria, 903 patients with non-ACLF at admission (1 received transplantation at 5 days) were stratified: 71 with progression to ACLF and 831 without progression to ACLF at 7 days. Four predictors (total bilirubin, international normalized ratio, alanine aminotransferase, and ferritin) were associated significantly with ACLF onset at 7 days. The COSSH-onset-ACLF score was constituted as follows: (0.101 × ln [alanine aminotransferase] + 0.819 × ln [total bilirubin] + 2.820 × ln [international normalized ratio] + 0.016 × ln [ferritin]). The C-indexes of the new score for 7-/14-/28-day onset (0.928/0.925/0.913) were significantly higher than those of 5 other scores (Chronic Liver Failure Consortium ACLF development score/Model for End-stage Liver Disease score/Model for End-stage Liver Disease sodium score/COSSH-ACLF score/Chronic liver failure Consortium ACLF score; all P < .001). The improvement in predictive errors, time-dependent receiver operating characteristic, probability density function evaluation, and calibration curves of the new score showed the highest predictive value for ACLF onset at 7/14/28 days. Risk stratification of the new score showed 2 strata with high and low risk (≥6.3/<6.3) of ACLF onset. The external validation group further confirmed the earlier results. CONCLUSIONS: A new prognostic score based on 4 predictors can accurately predict the 7-/14-/28-day onset of ACLF in patients with acute deterioration of HBV-related chronic liver disease and might be used to guide clinical management.


Assuntos
Insuficiência Hepática Crônica Agudizada , Doença Hepática Terminal , Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B , Doença Hepática Terminal/complicações , Hepatite B Crônica/complicações , Insuficiência Hepática Crônica Agudizada/complicações , Estudos Prospectivos , Alanina Transaminase , Prognóstico , Estudos Retrospectivos , Índice de Gravidade de Doença , Hepatite B/complicações , Bilirrubina , Curva ROC
11.
Nat Metab ; 4(10): 1287-1305, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36203054

RESUMO

Microglial cells consume adenosine triphosphate (ATP) during phagocytosis to clear neurotoxic ß-amyloid in Alzheimer's disease (AD). However, the contribution of energy metabolism to microglial function in AD remains unclear. Here, we demonstrate that hexokinase 2 (HK2) is elevated in microglia from an AD mouse model (5xFAD) and AD patients. Genetic deletion or pharmacological inhibition of HK2 significantly promotes microglial phagocytosis, lowers the amyloid plaque burden and attenuates cognitive impairment in male AD mice. Notably, the ATP level is dramatically increased in HK2-deficient or inactive microglia, which can be attributed to a marked upregulation in lipoprotein lipase (LPL) expression and subsequent increase in lipid metabolism. We further show that two downstream metabolites of HK2, glucose-6-phosphate and fructose-6-phosphate, can reverse HK2-deficiency-induced upregulation of LPL, thus supporting ATP production and microglial phagocytosis. Our findings uncover a crucial role for HK2 in phagocytosis through regulation of microglial energy metabolism, suggesting a potential therapeutic strategy for AD by targeting HK2.


Assuntos
Doença de Alzheimer , Microglia , Animais , Camundongos , Masculino , Microglia/metabolismo , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/uso terapêutico , Hexoquinase/genética , Hexoquinase/metabolismo , Hexoquinase/uso terapêutico , Metabolismo dos Lipídeos , Trifosfato de Adenosina/metabolismo , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo
13.
Biotechnol Bioeng ; 119(10): 2857-2867, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35864592

RESUMO

Vascularization is a critical but challenging process in developing functional bioengineered livers with the decellularized liver scaffolds (DLSs) and the process is accompanied by cell-specific metabolic alterations. To elucidate the dynamic alterations of metabolites during vascularization, rat DLSs were vascularized with human umbilical vein endothelial cells and liquid chromatography mass spectrometry-based metabolomics was performed on culture supernatants collected at 0, 1, 3, 7, 14, and 21 days. Overall, 1698 peak pairs or metabolites were detected in the culture supernatants, with 309 metabolites being positively identified. The orthogonal partial least-squares discriminant analysis and functional enrichment analysis revealed three phases that could be clearly discriminated, including Phase D1 (cell proliferation and migration), Phase D3D7 (vascular lumen formation), and Phase D14D21 (functional endothelial barrier formation). Seventy-two common differentially abundant metabolites of known identity were detected in these three phases when compared with Day 0. Of these metabolites, a high level of ß-Alanine indicated a better degree of vascularization and 14 days of in vitro dynamic culture is required to develop a functionalized vascular structure. These results enriched our understanding of the metabolic mechanism of DLS vascularization and indicated that ß-Alanine could function as a potential predictor of the patency of vascularized bioengineered livers.


Assuntos
Fígado , Alicerces Teciduais , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Fígado/irrigação sanguínea , Ratos , Alicerces Teciduais/química , beta-Alanina
14.
Front Mol Neurosci ; 15: 860275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465089

RESUMO

Environmental factors, such as medication during pregnancy, are one of the major causes of autism spectrum disorder (ASD). Valproic acid (VPA) intake during pregnancy has been reported to dramatically elevate autism risk in offspring. Recently, researchers have proposed that VPA exposure could induce excitatory or inhibitory synaptic dysfunction. However, it remains to be determined whether and how alterations in the excitatory/inhibitory (E/I) balance contribute to VPA-induced ASD in a mouse model. In the present study, we explored changes in the E/I balance during different developmental periods in a VPA mouse model. We found that typical markers of pre- and postsynaptic excitatory and inhibitory function involved in E/I balance markedly decreased during development, reflecting difficulties in the development of synaptic plasticity in VPA-exposed mice. The expression of brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the formation and maturation of glutamatergic and GABAergic synapses during postnatal development, was severely reduced in the VPA-exposed group. Treatment with exogenous BDNF during the critical E/I imbalance period rescued synaptic functions and autism-like behaviors, such as social defects. With these results, we experimentally showed that social dysfunction in the VPA mouse model of autism might be caused by E/I imbalance stemming from BDNF deficits during the developmental stage.

15.
Org Lett ; 24(8): 1587-1592, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080399

RESUMO

An open-air palladium-catalyzed O-glycosylation was developed using glycals and arylboronic acids with base additives at ambient conditions. The novel approach enabled facile access to various O-glycosides in high yields, with exclusive 1,4-cis-stereoselectivity tolerating reactive hydroxyl/amino groups. Mechanistic studies indicated that chemo-/stereoselectivity arose from the coordination between palladium and phenols generated in situ by oxidizing arylboronic acids, followed by an intramolecular attack. Isotope-labeling experiments revealed that the oxygen of O-glycosidic bonds came from O2.

16.
Gut ; 71(1): 163-175, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33431576

RESUMO

OBJECTIVE: Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) pathophysiology remains unclear. This study aims to characterise the molecular basis of HBV-ACLF using transcriptomics. METHODS: Four hundred subjects with HBV-ACLF, acute-on-chronic hepatic dysfunction (ACHD), liver cirrhosis (LC) or chronic hepatitis B (CHB) and normal controls (NC) from a prospective multicentre cohort were studied, and 65 subjects (ACLF, 20; ACHD, 10; LC, 10; CHB, 10; NC, 15) among them underwent mRNA sequencing using peripheral blood mononuclear cells (PBMCs). RESULTS: The functional synergy analysis focusing on seven bioprocesses related to the PBMC response and the top 500 differentially expressed genes (DEGs) showed that viral processes were associated with all disease stages. Immune dysregulation, as the most prominent change and disorder triggered by HBV exacerbation, drove CHB or LC to ACHD and ACLF. Metabolic disruption was significant in ACHD and severe in ACLF. The analysis of 62 overlapping DEGs further linked the HBV-based immune-metabolism disorder to ACLF progression. The signatures of interferon-related, neutrophil-related and monocyte-related pathways related to the innate immune response were significantly upregulated. Signatures linked to the adaptive immune response were downregulated. Disruptions of lipid and fatty acid metabolism were observed during ACLF development. External validation of four DEGs underlying the aforementioned molecular mechanism in patients and experimental rats confirmed their specificity and potential as biomarkers for HBV-ACLF pathogenesis. CONCLUSIONS: This study highlights immune-metabolism disorder triggered by HBV exacerbation as a potential mechanism of HBV-ACLF and may indicate a novel diagnostic and treatment target to reduce HBV-ACLF-related mortality.


Assuntos
Insuficiência Hepática Crônica Agudizada/patologia , Hepatite B Crônica/complicações , Leucócitos Mononucleares/imunologia , Insuficiência Hepática Crônica Agudizada/virologia , Imunidade Adaptativa , Adulto , Animais , Estudos de Casos e Controles , DNA Viral/sangue , Feminino , Vírus da Hepatite B , Humanos , Imunidade Inata , Masculino , Metaboloma , Pessoa de Meia-Idade , Estudos Prospectivos , Ratos , Transcriptoma
17.
Brain Behav Immun ; 100: 254-266, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915154

RESUMO

Acute sleep deprivation is a common condition in modern life and increases anxiety symptoms in healthy individuals. The neuroinflammatory response induced by microglial activation could be an important contributing factor, but its underlying molecular mechanisms are still unclear. In the present study, we first found that acute paradoxical sleep deprivation (PSD) induced by the modified multiple platform method (MMPM) for 6 h led to anxiety-like behavior in mice, as verified by the open field test, elevated plus maze test, light-dark box test, and marble burying test. In addition, bioinformatic analysis suggested an important relationship between acute sleep deprivation and brain inflammatory signaling pathways. Key genes enriched in the TNF signaling pathway were confirmed to be altered during acute PSD by qPCR and Western blot analyses, including the upregulation of the prostaglandin-endoperoxide synthase 2 (Ptgs2) and suppressor of cytokine signaling 3 protein (Socs3) genes and the downregulation of the cysteine-aspartic acid protease 3 (Casp3) gene. Furthermore, we found that microglial cells in the prefrontal cortex (PFC) were activated with significant branch structure changes and that the cell body area was increased in the PSD model. Finally, we found that minocycline, a tetracycline with anti-inflammatory properties, may ameliorate the anxiogenic effect and microglial activation. Our study reveals significant correlations of anxiety-like behavior, microglial activation, and inflammation during acute PSD.


Assuntos
Microglia , Privação do Sono , Animais , Ansiedade/metabolismo , Camundongos , Microglia/metabolismo , Córtex Pré-Frontal/metabolismo , Transdução de Sinais , Privação do Sono/complicações , Privação do Sono/metabolismo , Sono REM
18.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34853163

RESUMO

Acute-on-chronic liver failure (ACLF) is clinical syndrome with high mortality rate. This study aimed to perform detailed transcriptomic analysis in liver cirrhosis-based ACLF rats to elucidate ACLF pathogenesis. ACLF was induced by combined porcine serum with D-galactosamine and lipopolysaccharide. Gene expression profile of liver tissues from ACLF rats was generated by transcriptome sequencing to reveal the molecular mechanism. ACLF rats successfully developed with typical characteristics. Total of 2,354/3,576 differentially expressed genes were identified when ACLF was compared to liver cirrhosis and normal control, separately. The functional synergy analysis revealed prominent immune dysregulation at ACLF stage, whereas metabolic disruption was significantly down-regulated. Relative proportions of innate immune-related cells showed significant elevation of monocytes and macrophages, whereas adaptive immune-related cells were reduced. The seven differentially expressed genes underlying the ACLF molecular mechanisms were externally validated, among them THBS1, IL-10, and NR4A3 expressions were confirmed in rats, patient transcriptomics, and liver biopsies, verifying their potential value in the ACLF pathogenesis. This study indicates immune-metabolism disorder in ACLF rats, which may provide clinicians new targets for improving intervention strategies.


Assuntos
Insuficiência Hepática Crônica Agudizada/etiologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Suscetibilidade a Doenças , Metabolismo Energético , Imunidade , Insuficiência Hepática Crônica Agudizada/patologia , Animais , Biomarcadores , Microambiente Celular/genética , Microambiente Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Ratos , Transcriptoma
19.
Biomolecules ; 11(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944434

RESUMO

Ferroptosis, a newly described type of iron-dependent programmed cell death that is distinct from apoptosis, necroptosis, and other types of cell death, is involved in lipid peroxidation (LP), reactive oxygen species (ROS) production, and mitochondrial dysfunction. Accumulating evidence has highlighted vital roles for ferroptosis in multiple diseases, including acute kidney injury, cancer, hepatic fibrosis, Parkinson's disease, and Alzheimer's disease. Therefore, ferroptosis has become one of the research hotspots for disease treatment and attracted extensive attention in recent years. This review mainly summarizes the relationship between ferroptosis and various diseases classified by the system, including the urinary system, digestive system, respiratory system, nervous system. In addition, the role and molecular mechanism of multiple inhibitors and inducers for ferroptosis are further elucidated. A deeper understanding of the relationship between ferroptosis and multiple diseases may provide new strategies for researching diseases and drug development based on ferroptosis.


Assuntos
Doenças do Sistema Digestório/metabolismo , Ferroptose , Doenças do Sistema Nervoso/metabolismo , Doenças Urológicas/metabolismo , Doenças do Sistema Digestório/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Terapia de Alvo Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Doenças Urológicas/tratamento farmacológico
20.
iScience ; 24(12): 103485, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34927027

RESUMO

Terahertz (THz) frequency occupies a large portion of the electromagnetic spectrum that is between the infrared and microwave regions. Recent advances in THz application have stimulated interests regarding the biological effects within this frequency range. In the current study, we report that irradiation with a single-frequency THz laser on mice cortical neuron cultures increases excitatory synaptic transmission and neuronal firing activities. Microarray assay reveals gene expression dynamics after THz exposure, which is consistent with morphology and electrophysiology results. Besides, certain schedule of THz irradiation inhibits the proliferation of oligodendrocyte precursor cells (OPCs) and promotes OPC differentiation. Of note, the myelination process is enhanced after THz exposure. In summary, our observations suggest that THz irradiation can modulate the functions of different neuronal cells, with different sensitivity to THz. These results provide important understanding of the mechanisms that govern THz interactions with nervous systems and suggest THz wave as a new strategy for neuromodulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA