Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EBioMedicine ; 89: 104485, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36857860

RESUMO

BACKGROUND: Obesity is a worldwide epidemic and is considered a risk factor of severe manifestation of Coronavirus Disease 2019 (COVID-19). The pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host responses to infection, re-infection, and vaccination in individuals with obesity remain incompletely understood. METHODS: Using the diet-induced obese (DIO) mouse model, we studied SARS-CoV-2 Alpha- and Omicron BA.1-induced disease manifestations and host immune responses to infection, re-infection, and COVID-19 mRNA vaccination. FINDINGS: Unlike in lean mice, Omicron BA.1 and Alpha replicated to comparable levels in the lungs of DIO mice and resulted in similar degree of tissue damages. Importantly, both T cell and B cell mediated adaptive immune responses to SARS-CoV-2 infection or COVID-19 mRNA vaccination are impaired in DIO mice, leading to higher propensity of re-infection and lower vaccine efficacy. However, despite the absence of neutralizing antibody, vaccinated DIO mice are protected from lung damage upon Omicron challenge, accompanied with significantly more IFN-α and IFN-ß production in the lung tissue. Lung RNAseq and subsequent experiments indicated that COVID-19 mRNA vaccination in DIO mice boosted antiviral innate immune response, including the expression of IFN-α, when compared to the nonvaccinated controls. INTERPRETATION: Our findings suggested that COVID-19 mRNA vaccination enhances host innate antiviral responses in obesity which protect the DIO mice to a certain degree when adaptive immunity is suboptimal. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , SARS-CoV-2 , Camundongos Obesos , Reinfecção , Dieta , Obesidade , Anticorpos Neutralizantes , Interferon-alfa , RNA Mensageiro , Antivirais , Anticorpos Antivirais , Vacinas de mRNA
2.
Adv Sci (Weinh) ; 9(29): e2203040, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986392

RESUMO

The effective treatment of advanced cervical cancer remains challenging. Herein, single-nucleus RNA sequencing (snRNA-seq) and SpaTial enhanced resolution omics-sequencing (Stereo-seq) are used to investigate the immunological microenvironment of cervical squamous cell carcinoma (CSCC). The expression levels of most immune suppressive genes in the tumor and inflammation areas of CSCC are not significantly higher than those in the non-cancer samples, except for LGALS9 and IDO1. Stronger signals of CD56+ NK cells and immature dendritic cells are found in the hypermetabolic tumor areas, whereas more eosinophils, immature B cells, and Treg cells are found in the hypometabolic tumor areas. Moreover, a cluster of pro-tumorigenic cancer-associated myofibroblasts (myCAFs) are identified. The myCAFs may support the growth and metastasis of tumors by inhibiting lymphocyte infiltration and remodeling of the tumor extracellular matrix. Furthermore, these myCAFs are associated with poorer survival probability in patients with CSCC, predict resistance to immunotherapy, and might be present in a small fraction (< 30%) of patients with advanced cancer. Immunohistochemistry and multiplex immunofluorescence staining are conducted to validate the spatial distribution and potential function of myCAFs. Collectively, these findings enhance the understanding of the immunological microenvironment of CSCC and shed light on the treatment of advanced CSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Tecido Conjuntivo , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , RNA Nuclear Pequeno , Análise de Sequência de RNA , Transcriptoma/genética , Microambiente Tumoral/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
3.
Genomics ; 113(6): 3895-3906, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555497

RESUMO

Persistent infections of high-risk human papillomaviruses (HPVs) are the leading cause of cervical cancers. We collected cervical exfoliated cell samples from females in Changsha city, Hunan Province and obtained 338 viral genomes of four major HPV types, including HPV 16 (n = 82), 18 (n = 35), 52 (n = 121) and 58 (n = 100). The lineage/sublineage distribution of the four HPVs confirmed previous epidemiological reports, with the predominant prevailing sublineage as A4 (50%), A1 (37%) and A3 (13%) for HPV16, A1 (83%) for HPV18, B2 (86%) for HPV52 and A1 (65%), A3 (19%) and A2 (12%) for HPV58. We also identified two potentially novel HPV18 sublineages, i.e. A6 and A7. Virus mutation analysis further revealed the presence of HPV16 and HPV58 sublineages associated with potentially high oncogenicity. These findings expanded our knowledge of the HPV genetic diversity in China, providing valuable evidence to facilitate HPV DNA screening, vaccine effectiveness evaluation and control strategy development.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Alphapapillomavirus/genética , China/epidemiologia , Feminino , Variação Genética , Genótipo , Papillomavirus Humano 16/genética , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Filogenia
4.
Cell Discov ; 7(1): 23, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850111

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, the microbial composition of the respiratory tract and other infected tissues as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Between 27 January and 26 February 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients in Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. We identified distinct signatures of microbial dysbiosis among severely ill COVID-19 patients on broad spectrum antimicrobial therapy. Co-detection of other human respiratory viruses (including human alphaherpesvirus 1, rhinovirus B, and human orthopneumovirus) was demonstrated in 30.8% (4/13) of the severely ill patients, but not in any of the mildly affected patients. Notably, the predominant respiratory microbial taxa of severely ill patients were Burkholderia cepacia complex (BCC), Staphylococcus epidermidis, or Mycoplasma spp. (including M. hominis and M. orale). The presence of the former two bacterial taxa was also confirmed by clinical cultures of respiratory specimens (expectorated sputum or nasal secretions) in 23.1% (3/13) of the severe cases. Finally, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes was demonstrated in one severely ill patient, which might accelerate his disease deterioration and death occurring one month after ICU admission. Our findings point to SARS-CoV-2-related microbial dysbiosis and various antibiotic-resistant respiratory microbes/pathogens in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking strategies are needed to prevent the spread of antimicrobial resistance, improve the treatment regimen and clinical outcomes of hospitalized, severely ill COVID-19 patients.

5.
Front Med (Lausanne) ; 8: 585358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659260

RESUMO

The emergence of the novel human coronavirus, SARS-CoV-2, causes a global COVID-19 (coronavirus disease 2019) pandemic. Here, we have characterized and compared viral populations of SARS-CoV-2 among COVID-19 patients within and across households. Our work showed an active viral replication activity in the human respiratory tract and the co-existence of genetically distinct viruses within the same host. The inter-host comparison among viral populations further revealed a narrow transmission bottleneck between patients from the same households, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions.

6.
Genome Med ; 13(1): 30, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618765

RESUMO

BACKGROUND: Since early February 2021, the causative agent of COVID-19, SARS-CoV-2, has infected over 104 million people with more than 2 million deaths according to official reports. The key to understanding the biology and virus-host interactions of SARS-CoV-2 requires the knowledge of mutation and evolution of this virus at both inter- and intra-host levels. However, despite quite a few polymorphic sites identified among SARS-CoV-2 populations, intra-host variant spectra and their evolutionary dynamics remain mostly unknown. METHODS: Using high-throughput sequencing of metatranscriptomic and hybrid captured libraries, we characterized consensus genomes and intra-host single nucleotide variations (iSNVs) of serial samples collected from eight patients with COVID-19. The distribution of iSNVs along the SARS-CoV-2 genome was analyzed and co-occurring iSNVs among COVID-19 patients were identified. We also compared the evolutionary dynamics of SARS-CoV-2 population in the respiratory tract (RT) and gastrointestinal tract (GIT). RESULTS: The 32 consensus genomes revealed the co-existence of different genotypes within the same patient. We further identified 40 intra-host single nucleotide variants (iSNVs). Most (30/40) iSNVs presented in a single patient, while ten iSNVs were found in at least two patients or identical to consensus variants. Comparing allele frequencies of the iSNVs revealed a clear genetic differentiation between intra-host populations from the respiratory tract (RT) and gastrointestinal tract (GIT), mostly driven by bottleneck events during intra-host migrations. Compared to RT populations, the GIT populations showed a better maintenance and rapid development of viral genetic diversity following the suspected intra-host bottlenecks. CONCLUSIONS: Our findings here illustrate the intra-host bottlenecks and evolutionary dynamics of SARS-CoV-2 in different anatomic sites and may provide new insights to understand the virus-host interactions of coronaviruses and other RNA viruses.


Assuntos
COVID-19/prevenção & controle , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética , COVID-19/virologia , Frequência do Gene , Genótipo , Haplótipos , Interações Hospedeiro-Patógeno , Humanos , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia
7.
Virology ; 553: 62-69, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33238224

RESUMO

Increasing evidences indicate that high-risk HPV variants are heterogeneous in carcinogenicity and ethnic dispersion. In this work, we identified genetic signatures for convenient determination of lineage/sublineage of HPV16, 18, 52 and 58 variants. Using publicly available genomes, we found that E2 of HPV16, L2 of HPV18, L1 and LCR of HPV52, and L2, LCR and E1 of HPV58 contain the proper genetic signature for lineage/sublineage classification. Sets of hierarchical signature nucleotide positions were further confirmed for high accuracy (>95%) by classifying HPV genomes obtained from Chinese females, which included 117 HPV16 variants, 48 HPV18 variants, 117 HPV52 variants and 89 HPV58 variants. The circulation of HPV variants posing higher cancer risk in Eastern China, such as HPV16 A4 and HPV58 A3, calls for continuous surveillance in this region. The marker genes and signature nucleotide positions may facilitate cost-effective diagnostic detections of HPV variants in clinical settings.


Assuntos
Alphapapillomavirus/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Infecções por Papillomavirus/virologia , Alphapapillomavirus/classificação , Alphapapillomavirus/isolamento & purificação , China , Feminino , Variação Genética , Genoma Viral , Papillomavirus Humano 16/classificação , Papillomavirus Humano 16/isolamento & purificação , Papillomavirus Humano 18/classificação , Papillomavirus Humano 18/isolamento & purificação , Humanos , Nucleotídeos , Filogenia , Sequenciamento Completo do Genoma
8.
Cell Mol Immunol ; 17(11): 1119-1125, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33037400

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been redetected after discharge in some coronavirus disease 2019 (COVID-19) patients. The reason for the recurrent positivity of the test and the potential public health concern due to this occurrence are still unknown. Here, we analyzed the viral data and clinical manifestations of 289 domestic Chinese COVID-19 patients and found that 21 individuals (7.3%) were readmitted for hospitalization after detection of SARS-CoV-2 after discharge. First, we experimentally confirmed that the virus was involved in the initial infection and was not a secondary infection. In positive retests, the virus was usually found in anal samples (15 of 21, 71.4%). Through analysis of the intracellular viral subgenomic messenger RNA (sgmRNA), we verified that positive retest patients had active viral replication in their gastrointestinal tracts (3 of 16 patients, 18.7%) but not in their respiratory tracts. Then, we found that viral persistence was not associated with high viral titers, delayed viral clearance, old age, or more severe clinical symptoms during the first hospitalization. In contrast, viral rebound was associated with significantly lower levels of and slower generation of viral receptor-binding domain (RBD)-specific IgA and IgG antibodies. Our study demonstrated that the positive retest patients failed to create a robust protective humoral immune response, which might result in SARS-CoV-2 persistence in the gastrointestinal tract and possibly in active viral shedding. Further exploration of the mechanism underlying the rebound in SARS-CoV-2 in this population will be crucial for preventing virus spread and developing effective vaccines.


Assuntos
Betacoronavirus/fisiologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Trato Gastrointestinal/virologia , Pneumonia Viral/diagnóstico , Anticorpos Antivirais/metabolismo , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/imunologia , Epitopos/imunologia , Humanos , Imunidade Humoral , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Pandemias , Pneumonia Viral/imunologia , Ligação Proteica , Domínios Proteicos/imunologia , SARS-CoV-2 , Testes Sorológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral , Eliminação de Partículas Virais
9.
Genome Med ; 12(1): 57, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605661

RESUMO

BACKGROUND: COVID-19 (coronavirus disease 2019) has caused a major epidemic worldwide; however, much is yet to be known about the epidemiology and evolution of the virus partly due to the scarcity of full-length SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) genomes reported. One reason is that the challenges underneath sequencing SARS-CoV-2 directly from clinical samples have not been completely tackled, i.e., sequencing samples with low viral load often results in insufficient viral reads for analyses. METHODS: We applied a novel multiplex PCR amplicon (amplicon)-based and hybrid capture (capture)-based sequencing, as well as ultra-high-throughput metatranscriptomic (meta) sequencing in retrieving complete genomes, inter-individual and intra-individual variations of SARS-CoV-2 from serials dilutions of a cultured isolate, and eight clinical samples covering a range of sample types and viral loads. We also examined and compared the sensitivity, accuracy, and other characteristics of these approaches in a comprehensive manner. RESULTS: We demonstrated that both amplicon and capture methods efficiently enriched SARS-CoV-2 content from clinical samples, while the enrichment efficiency of amplicon outran that of capture in more challenging samples. We found that capture was not as accurate as meta and amplicon in identifying between-sample variations, whereas amplicon method was not as accurate as the other two in investigating within-sample variations, suggesting amplicon sequencing was not suitable for studying virus-host interactions and viral transmission that heavily rely on intra-host dynamics. We illustrated that meta uncovered rich genetic information in the clinical samples besides SARS-CoV-2, providing references for clinical diagnostics and therapeutics. Taken all factors above and cost-effectiveness into consideration, we proposed guidance for how to choose sequencing strategy for SARS-CoV-2 under different situations. CONCLUSIONS: This is, to the best of our knowledge, the first work systematically investigating inter- and intra-individual variations of SARS-CoV-2 using amplicon- and capture-based whole-genome sequencing, as well as the first comparative study among multiple approaches. Our work offers practical solutions for genome sequencing and analyses of SARS-CoV-2 and other emerging viruses.


Assuntos
Betacoronavirus/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma/métodos , COVID-19 , Infecções por Coronavirus , Variação Genética/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Pandemias , Pneumonia Viral , RNA Viral/genética , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA