RESUMO
Chiral (S)-o-fluorostyrene oxide (oFSO) and vicinal diol (R)-o-fluorophenylethane-1,2-diol (oFPED) are important intermediates for synthesizing treatments for neuropathic diseases. This study aimed to engineer Aspergillus usamii epoxide hydrolase (AuEH2) through a rational mutagenesis strategy to customize high enantioselectivity mutant for rac-oFSO. Out of 181 single-site mutants screened, six showed elevated enantiomeric ratio (E value) ranging from 32 to 108 according to E value and activity mutability landscapes. By combinatorial mutagenesis of A250I with other five single-site mutants, we constructed five double-site mutants, with the best-performing mutant, D5 (A250I/L344V), achieving an E value of 180. This mutant enabled the efficient kinetic resolution of 400 mM rac-oFSO in pure water system using E. coli/Aueh2A250I/L344V, yielding (S)-oFSO (>99 % ees, 50 % yields) and (R)-oFPED (>99 % eep, 50 % yieldp) with space-time yields (STYs) of 331.5 and 376.1 g/L/d, respectively. Combining crystal structure resolution with theoretical computations clarified the enantioselectivity mechanism of D5, demonstrating that A250I reduced the funnel-shaped substrate binding pocket (SBP) while L344V extended its bottom, enhancing specific recognition of (R)-oFSO and inhibiting (S)-oFSO hydrolysis. These findings provide valuable insights for designing highly enantioselective enzyme mutants, advancing the field of asymmetric synthesis of chiral compounds using green biocatalytic processes.
RESUMO
Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.