Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Math Biosci Eng ; 21(3): 3519-3539, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38549294

RESUMO

The absence of an effective gripping force feedback mechanism in minimally invasive surgical robot systems impedes physicians' ability to accurately perceive the force between surgical instruments and human tissues during surgery, thereby increasing surgical risks. To address the challenge of integrating force sensors on minimally invasive surgical tools in existing systems, a clamping force prediction method based on mechanical clamp blade motion parameters is proposed. The interrelation between clamping force, displacement, compression speed, and the contact area of the clamp blade indenter was analyzed through compression experiments conducted on isolated pig kidney tissue. Subsequently, a prediction model was developed using a backpropagation (BP) neural network optimized by the Sparrow Search Algorithm (SSA). This model enables real-time prediction of clamping force, facilitating more accurate estimation of forces between instruments and tissues during surgery. The results indicate that the SSA-optimized model outperforms traditional BP networks and genetic algorithm-optimized (GA) BP models in terms of both accuracy and convergence speed. This study not only provides technical support for enhancing surgical safety and efficiency, but also offers a novel research direction for the design of force feedback systems in minimally invasive surgical robots in the future.


Assuntos
Procedimentos Cirúrgicos Robóticos , Humanos , Animais , Suínos , Desenho de Equipamento , Pressão , Redes Neurais de Computação , Força da Mão
2.
Math Biosci Eng ; 21(1): 1203-1227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303461

RESUMO

The control of robot manipulator pose is significantly complicated by the uncertainties arising from flexible joints, presenting substantial challenges in incorporating practical operational constraints. These challenges are further exacerbated in teleoperation scenarios, where factors such as synchronization and external disturbances further amplify the difficulties. At the core of this research is the introduction of a pioneering teleoperation controller, ingeniously integrating a nonlinear extended state observer (ESO) with the barrier Lyapunov function (BLF) while effectively accommodating a steady time delay. The controller in our study demonstrates exceptional proficiency in accurately estimating uncertainties arising from both flexible joints and external disturbances using the nonlinear ESO. Refined estimates, in conjunction with operational constraints of the system, are integrated into our BLF-based controller. Consequently, a synchronized control mechanism for teleoperation is achieved, exhibiting promising performance. Importantly, our experimental findings provide substantial evidence that our proposed approach effectively reduces the tracking error of the teleoperation system to within 0.02 rad. This advancement highlights the potential of our controller in significantly enhancing the precision and reliability of teleoperated robot manipulators.

3.
J Ethnopharmacol ; 325: 117890, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336186

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dang-Gui-Si-Ni (DGSN) decoction is a classic prescription in the clinical practice of traditional Chinese Medicine (TCM). DGSN decoction is often used to relieve symptoms of cold coagulation and blood stasis recorded by Treatise on Febrile Diseases (Shang Han Lun) and treat Raynaud's disease, dysmenorrhea, arthritis, migraine in TCM clinic. Accumulated evidences have suggested that this diseases are related to microcirculation disturbance. However, the anticoagulant activity and underlying mechanisms of DGSN decoction responsible for the therapeutic not well understood. AIM OF THE STUDY: The fingerprint and anticoagulant activity in vivo-in vitro of DGSN decoction were evaluated to strengthen the quality control and activity study of formulas. MATERIALS AND METHODS: The chemical components of DGSN decoction were analyzed by HPLC and its fingerprint similarity were evaluated by "Chinese Medicine Chromatographic Fingerprint Similarity Evaluation Software (2012 Edition)". The anticoagulant activity of DGSN decoction was assessed by measuring four coagulation factors (PT, TT, APTT, FIB) in vitro. Zebrafish thrombosis model induced by punatinib was established to evaluate the activity of improving microvascular hemodynamics in vivo. Quantitative real-time polymerase chain reaction (q-PCR) were adopted to compare the changes in the RNA expression levels of coagulation factor II (FII), VII (FVII), IX (FIX) and X (FX) in zebrafish thrombosis model. RESULTS: The fingerprint similarity evaluation method of DGSN decoction was established. The results showed that 18 samples had higher similarity (S1-S18 > 0.878). Pharmacodynamic results showed that DGSN decoction could extend PT, TT and APTT, and reduce FIB content in vitro. Meanwhile, it markedly enhanced the cardiac output and blood flow velocity at low dosage (500 µg mL-1) in vivo. q-PCR data demonstrated that DGSN decoction (500 µg mL-1) could downregulate the RNA expression of FII, FVII, FIX and FX. Interestingly, there were a bidirectional regulation of FII, FIX and FX in a certain concentration range. In general, DGSN decoction can significantly improve hemodynamics and downregulate coagulation factors, and the results were consistent both in vitro - in vivo. CONCLUSION: The fingerprint study provide a new perspective for improving the quality control of DGSN decoction. DGSN decoction possess anticoagulant activity by regulating multiple coagulation factors simultaneously. Thus, it has the potential to develop into the novel raw material of anticoagulant drugs.


Assuntos
Angelica sinensis , Medicamentos de Ervas Chinesas , Trombose , Feminino , Animais , Peixe-Zebra , Fatores de Coagulação Sanguínea , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Protrombina , Trombose/tratamento farmacológico , RNA
4.
Entropy (Basel) ; 25(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190432

RESUMO

An isothermal piston is a device that can achieve near-isothermal compression by enhancing the heat transfer area with a porous media. However, flow resistance between the porous media and the liquid is introduced, which cannot be neglected at a high operational speed. Thus, the influence of rotational speed on the isothermal piston compression system is analyzed in this study. A flow resistance mathematical model is established based on the face-centered cubic structure hypothesis. The energy conservation rate and efficiency of the isothermal piston are defined. The effect of rotational speed on resistance is discussed, and a comprehensive energy conservation performance assessment of the isothermal piston is analyzed. The results show that the increasing rate of the resistance work increases significantly proportional to the rotational speed, and the proportion of resistance work in the total work increases gradually and sharply. The total work including compression and resistance cannot be larger than the compression work under adiabatic conditions. The maximum rotational speed is 650 rpm.

5.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012648

RESUMO

Salecan (Sal) is a novel marine microbial polysaccharide. In the present research, Sal and soy protein isolate (SPI) were adopted to fabricate Sal-SPI composite hydrogel based on a stepwise process (thermal treatment and transglutaminase induction). The effect of Sal concentration on morphology, texture properties, and the microstructure of the hydrogel was evaluated. As Sal concentration varied from 0.4 to 0.6 wt%, hydrogel elasticity increased from 0.49 to 0.85 mm. Furthermore, the internal network structure of Sal-SPI composite hydrogel also became denser and more uniform as Sal concentration increased. Rheological studies showed that Sal-SPI elastic hydrogel formed under the gelation process. Additionally, FTIR and XRD results demonstrated that hydrogen bonds formed between Sal and SPI molecules, inferring the formation of the interpenetrating network structure. This research supplied a green and simple method to fabricate Sal-SPI double network hydrogels.


Assuntos
Hidrogéis , beta-Glucanas , Hidrogéis/química , Proteínas de Soja/metabolismo , Transglutaminases/metabolismo , beta-Glucanas/química
6.
Pharmaceutics ; 14(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35890387

RESUMO

Salecan (Sal) is a novel microbial polysaccharide. In the present research, thermal treatment was performed to fabricate Sal hydrogel. The effect of Sal concentration on water holding capacity, swelling properties, texture properties, and microstructure of the hydrogels was discussed. It was found that the equilibrium degree of swelling (EDS) of Sal hydrogels was above 1500%, inferred Sal was a highly hydrophilic polysaccharide. As Sal concentration increased from 3.5 to 8.0 wt%, the hardness increased from 0.88 to 2.07 N and the water hold capability (WHC) increased from 91.3% to 98.2%. Furthermore, the internal network structure of Sal hydrogel also became denser and more uniform. Rheological studies suggested that elastic hydrogel formed under the gelation process. All these results demonstrated that Sal hydrogel prepared by thermal treatment had good gelling properties, which opened up a new safe way for the preparation of Sal hydrogel and broadened the application range of Sal.

7.
Neurotoxicology ; 91: 60-68, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537655

RESUMO

Astragalin (AST) is a natural flavonoid with excellent antioxidant and anti-inflammatory activities. However, whether AST is an effective chemical for neuronal protection and its underlying mechanisms remain to be elucidated. In this study, we established a mouse model of cognitive impairment and aging-like phenotype induced by sequential administration of AlCl3 and D-galactose (Gal). We found that AST effectively ameliorated cognitive impairment in the model mice and improved their learning and memory performance in the Morris water maze (MWM) test. AlCl3/Gal-induced activation of astrocytes and microglia and inflammation were observed by immunohistochemistry and immunofluorescence, but could be attenuated by AST. In addition, alterations in oxidative stress-regulating enzymes or markers, including T-SOD, T-AOC, CAT, GSH-Px, and MDA, as well as the pro-inflammatory factors TNF-α, IL-1ß, and IL-6, were restored. At the mechanistic level, AlCl3/Gal-intoxicated mice showed a significant elevation of Notch/HES-1 and NF-κB signaling axis corresponding to microglia activation and inflammation. AST attenuated the activation of Notch/HES-1 and NF-κB signaling axis, thus reducing the inflammation. In summary, AST is a promising natural product to protect neurons from toxin-induced injury, indicating its therapeutic potential for neurological disorders.


Assuntos
Envelhecimento , Anti-Inflamatórios não Esteroides , Quempferóis , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Estresse Oxidativo , Envelhecimento/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças , Galactose/toxicidade , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Camundongos , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos
8.
J Ethnopharmacol ; 282: 114606, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506939

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tibetan ginseng named Wangla (tuber of Coeloglossum viride var. bracteatum) is a traditional tonic that has Yang-strengthening and qi-enhancing, tranquilizing, intelligence-enhancing and longevity-enhancing properties. It has been used to treat impotence, spermatorrhea, anemia and insomnia. Therefore, its characteristic components and neuronal modulating effects were studied. AIM OF THE STUDY: To investigate the elimination of Aß-induced toxicity by CE and to elucidate the molecular mechanisms involving BDNF, FGF2, and their related signaling axis, and the RIP1-driven inflammatory pathway. MATERIALS AND METHODS: We established Aß-induced toxicity models in cultured neurons and ICR mice, respectively. MWM and fear conditioning tests were performed for behavioral analysis of cognitive functions in mice. Western blot was used to investigate the levels of BDNF, FGF2, and their downstream effector TrkB/Akt/Bcl-2, as well as the RIP1-driven RIP1/RIP3/MLKL pathway. Immunofluorescence assay is used to examine the status of glial cells. RESULTS: CE abrogated Aß toxicity and inhibited apoptosis in cultured neurons, mainly by regulating the BDNF, FGF2, and TrkB/Akt signaling pathways as well as RIP1-driven inflammation and necroptosis. Similarly, mice injected intracerebrally with Aß exhibited cognitive deficits and had elevated oxidative stress and inflammatory factors detected in their serum and brain. However, CE-treated mice showed recovery of cognitive abilities and quelled levels of oxidative stress and inflammatory factors. Moreover, Aß toxicity led to a reduction in BDNF, FGF2, and related signaling regulators in the hippocampus and prefrontal cortex, accompanied by activation of RIP1-driven inflammatory signaling pathways, and a reduction in TBK1 and Bcl-2. However, CE restored the levels of BDNF, FGF2, and TrkB/Akt signaling pathway, while inhibiting RIP1-induced RIP1/RIP3/MLKL pathway, thereby antagonizing apoptosis and maintaining neuronal activity. CONCLUSIONS: CE effectively eliminated the toxicity of Aß in cultured neurons and mouse models, which holds promise for drug development.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Necroptose/efeitos dos fármacos , Orchidaceae , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia
9.
Inflamm Res ; 70(10-12): 1151-1164, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34661679

RESUMO

OBJECTIVE: Gisenoside Rg1 is a potent neuroprotectant in ginseng. The aim of this study was to investigate the elimination effect of Rg1 on cadmium (Cd)-induced neurotoxicity. MATERIALS AND METHODS: A cumulative Cd exposure mouse model was established. Also, the toxicity of Cd and the protective effect of Rg1 were examined in vitro using cultured neurons and microglia. RESULTS: We found that Cd-intoxicated mice exhibited significant injury in the liver, kidney, small intestine, and testis, along with cognitive impairment. Antioxidant enzymes such as SOD, GSH-Px and CAT were reduced in the blood and brain, and correspondingly, the lipid peroxidation product MDA was elevated. In the brain, astrocytes and microglia were activated, characterized by an increase in inflammatory factors such as TNF-α, IL-1ß and IL-6, as well as their protein markers GFAP and IBA1. However, Rg1 eliminated Cd-induced toxicity and restored oxidative stress and inflammatory responses, correspondingly restoring the behavioral performance of the animals. Meanwhile, the BDNF-TrkB/Akt and Notch/HES-1 signaling axes were involved in the Rg1-mediated elimination of Cd-induced toxicity. CONCLUSION: Rg1 is a promising agent for the elimination of Cd-induced toxicity.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cádmio , Ginsenosídeos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Ginsenosídeos/farmacologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/imunologia , Síndromes Neurotóxicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/imunologia , Testículo/efeitos dos fármacos , Testículo/patologia
10.
Neurotoxicology ; 86: 1-9, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174317

RESUMO

The neurotoxicity caused by cadmium (Cd) is well known in humans and experimental animals. However, there is no effective treatment for its toxicity. In this study, we established Cd toxicity models in cultured cells or mice to investigate the detoxification effect of edaravone (Eda). We found that Eda protected GL261 cells from Cd toxicity and prevented the loss of cell viability. In Cd-exposed mice, liver, kidney and testicular damage, as well as cognitive dysfunction were observed. Oxidative stress and inflammatory responses, such as decreased SOD and CAT, increased LDH and MDA, and abnormal changes in the inflammatory factors TNF-α, IL-1ß, IL-6 and IL-10 were detected in serum and brain tissue. Eda protected mice from Cd-induced toxicity and abrogated oxidative stress and inflammatory responses. Also, Eda prevented inflammatory activation of microglia and astrocytes and was accompanied by restoration of the neuronal marker protein MAP2, indicating restoration of neuronal function. In addition, the BDNF-TrkB/Akt and Notch/HES-1 signaling axes were involved in the response of Eda to the elimination of Cd toxicity. In conclusion, Eda does contribute to the clearance of Cd-induced toxicity.


Assuntos
Encéfalo/efeitos dos fármacos , Cádmio/toxicidade , Edaravone/farmacologia , Sequestradores de Radicais Livres/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Relação Dose-Resposta a Droga , Edaravone/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/fisiologia
11.
J Sci Food Agric ; 101(10): 4398-4408, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33423304

RESUMO

BACKGROUND: To improve the environmental resistance of probiotics, and particularly their survival in the gastrointestinal environment, a fish gelatin (FG) / sodium alginate (SA) double network gelation (FSDN) was developed to encapsulate them. Thermal treatment and calcium ion inducement were adopted to fabricate fish gelatin and sodium alginate gels. It was feasible to scale up this process. The effects of FG concentration (0-60 g/L) on FSDN properties, including morphology, water-holding capacity, and encapsulation efficiency were evaluated. RESULTS: The results indicated that the addition of FG could improve the transparency, rehydration, and water-holding capacity of FSDN. Scanning electronic microscope (SEM) images revealed that FSDN had a denser and more complete structure than SA. Encapsulation efficiency improved from 15.85% to 91.91% as the FG concentration ranged from 0 to 50 g/L. Bifidobacterium longum embedded by FSDN showed better thermal stability than when it was free. Compared with bare probiotics (1.7%), the encapsulated ones exhibited higher viability (above 15%) in simulated gastric fluid. CONCLUSION: In conclusion, interpenetrating FSDN is an effective barrier constituent and could achieve the targeted delivery of probiotics. It is a potential new delivery carrier for the oral administration of probiotics. © 2021 Society of Chemical Industry.


Assuntos
Alginatos/química , Bifidobacterium/química , Composição de Medicamentos/métodos , Proteínas de Peixes/química , Gelatina/química , Probióticos/química , Animais , Peixes , Géis/química , Temperatura Alta
12.
Entropy (Basel) ; 22(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-33286784

RESUMO

Reducing carbon emissions is an urgent problem around the world while facing the energy and environmental crises. Whatever progress has been made in renewable energy research, efforts made to energy-saving technology is always necessary. The energy consumption from fluid power systems of industrial processes is considerable, especially for pneumatic systems. A novel isothermal compression method was proposed to lower the energy consumption of compressors. A porous medium was introduced to compose an isothermal piston. The porous medium was located beneath a conventional piston, and gradually immerged into the liquid during compression. The compression heat was absorbed by the porous medium, and finally conducted with the liquid at the chamber bottom. The heat transfer can be significantly enhanced due to the large surface area of the porous medium. As the liquid has a large heat capacity, the liquid temperature can maintain constant through circulation outside. This create near-isothermal compression, which minimizes energy loss in the form of heat, which cannot be recovered. There will be mass loss of the air due to dissolution and leakage. Therefore, the dissolution and leakage amount of gas are compensated for in this method. Gas is dissolved into liquid with the pressure increasing, which leads to mass loss of the gas. With a pressure ratio of 4:1 and a rotational speed of 100 rpm, the isothermal piston decreased the energy consumption by 45% over the conventional reciprocation piston. This gain was accomplished by increasing the heat transfer during the gas compression by increasing the surface area to volume ratio in the compression chamber. Frictional forces between the porous medium and liquid was presented. Work to overcome the frictional forces is negligible (0.21% of the total compression work) under the current operating condition.

13.
Int J Med Sci ; 17(14): 2207-2213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922183

RESUMO

2,3,5,4'-Tetrahydroxystilbene-2-O-ß-d-glucoside (THSG) is the major active ingredient in Plygonum multiflorum that displays a great deal of health-benefits including anti-oxidation, anti-hyperlipidemia, anti-cancer, anti-inflammation and neuroprotection. However, it is unclear whether THSG exerts neuroprotective functions by regulating neurotrophic factors and their associated signaling pathways. In this study, hippocampal neurons were challenged with staurosporine (STS) to establish a neural damage model. We found that STS-induced cytotoxicity introduced significant morphological collapse and initiating cell apoptosis, along with the down regulation of BDNF and TrkB/Akt signaling axis. In contrast, neurons pretreated with THSG showed resistance to STS-induced toxicity and maintained cell survival. THSG rescued STS induced dysfunctions of BDNF and its associated TrkB/Akt signaling, and restored the expression of Bcl-2 and Caspase-3. However, inhibition of TrkB activity by K252a or Akt signaling by LY294002 abolished the neuroprotective effects of THSG. Therefore, BDNF and TrkB/Akt signaling axis is a promise target for THSG mediated neuroprotective functions.


Assuntos
Glucosídeos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estilbenos/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Carbazóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Fallopia multiflora/química , Hipocampo/citologia , Alcaloides Indólicos/farmacologia , Morfolinas/farmacologia , Neurônios/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor trkB/antagonistas & inibidores , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estaurosporina/toxicidade
14.
Polymers (Basel) ; 12(8)2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32748896

RESUMO

We developed the interpenetrating double network composite hydrogel based on poly (vinyl alcohol) (PVA) and fish gelatin (FG) via thermal treatment and repeated freeze-thawing. A function of salicylic acid was incorporated into the hydrogel to improve its antibacterial properties. The color values, water contents, water evaporation rate, and swelling behavior were investigated. The drug-loading performance of the composite hydrogel was demonstrated by loading salicylic acid in various hydrogel systems. Moreover, the cumulative dissolution percentage of salicylic acid and the antibacterial activity of composite hydrogel were carried out. The results revealed that as FG concentration increased from 0% to 3.75% (w/v), gels changed from white to slight yellow and the swelling ratio increased from 54% to 83% (within 8 h). The presence of FG decreased the water content of gels which ranged from 86% to 89% and also decreased water evaporation rate. All gels presented the swelling index within 0.5-1.0, indicating a non-Fickian diffusion mechanism. The drug sustained dissolution behavior of pure PVA and composite hydrogel showed the same trend. Besides, the presence of the obvious bacteriostatic zones means that drug-loaded composite hydrogels have an effective antibacterial property. These results demonstrated that PVA/FG-based interpenetrating hydrogel is an appropriate biomaterial for drug-carrying wound dressing application.

15.
IBRO Rep ; 8: 115-121, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32373755

RESUMO

Tea polyphenols (TP) are the major ingredients in tea beverages that display health-benefits including anti-oxidation, anti-inflammation, anti-aging, attenuating blood pressure and deflating. In this study, we investigated the neuroprotective effects of TP to attenuate staurosporine (STS)-induced cytotoxicity. Rat hippocampal neurons were isolated, cultured and incubated with STS to induce neurite collapse and apoptosis, however, the medication of TP eliminated these adverse effects and maintained the morphology of neurons. STS decreased the expression of pro-BDNF, downregulated the TrkB/Akt/Bcl-2 signaling axis and promoted the activation of Erk1/2 and caspase-3. In contrast, TP rescued the expression of pro-BDNF and antagonistically restored the biochemistry of aforementioned signaling effectors. Consistently, the activity of TP can be attenuated by the inhibition of TrkB or Akt by small chemicals K252a and LY294002. Therefore, BDNF-TrkB and Akt signaling axis is essential for TP-mediated neuroprotective effects. In summary, TP showed beneficial effects to protect neurons from exogenous insults such as STS-induced neural cytotoxicity and cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA