Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Chem Commun (Camb) ; 60(41): 5447-5450, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38687569

RESUMO

A Prussian blue analogue was synthesized using biomass leather waste as a precursor by doping with Co2+ ions. This material, demonstrates good performance in both the oxygen reduction reaction and oxygen evolution reaction, and exhibits excellent charge-discharge performance and stability in zinc-air batteries.

2.
Dalton Trans ; 53(19): 8202-8213, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687296

RESUMO

In this study, two polymorphs of the [1,1'-dibutyl-4,4'-bipyridinium][Ni(mnt)2] salt (1) were synthesized. The dark-green polymorph (designated as 1-g) was prepared under ambient conditions by the rapid precipitation method in aqueous solutions. Subsequently, the red polymorph (labeled as 1-r) was obtained by subjecting 1-g to ultrasonication in MeOH at room temperature. Microanalysis, infrared spectroscopy, thermogravimetry (TG), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) techniques were used to characterize the two polymorphs. Both 1-g and 1-r exhibit structural phase transitions: a reversible phase transition at ∼403 K (∼268 K) upon heating and 384 K (∼252 K) upon cooling for 1-g (1-r) within the temperature range below 473 K. Interestingly, on heating 1-r to 523 K, an irreversible phase transition occurred at about 494 K, resulting in the conversion of 1-r into 1-g. Relative to 1-r, 1-g represents a thermodynamically metastable phase wherein numerous high-energy conformations in butyl chains of cations are confined within the lattice owing to quick precipitation or rapid annealing from higher temperatures. Through variable-temperature single crystal and powder X-ray diffractions, UV-visible spectroscopy, dielectric spectroscopy, and DSC analyses, this study delves into the mechanism underlying phase transitions for each polymorph and the manual transformation between 1-g and 1-r as well.

3.
Angew Chem Int Ed Engl ; : e202405676, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606914

RESUMO

Metal-organic framework (MOF) membranes with rich functionality and tunable pore system are promising for precise molecular separation; however, it remains a challenge to develop defect-free high-connectivity MOF membrane with high water stability owing to uncontrollable nucleation and growth rate during fabrication process. Herein, we report on a confined-coordination induced intergrowth strategy to fabricate lattice-defect-free Zr-MOF membrane towards precise molecular separation. The confined-coordination space properties (size and shape) and environment (water or DMF) were regulated to slow down the coordination reaction rate via controlling the counter-diffusion of MOF precursors (metal cluster and ligand), thereby inter-growing MOF crystals into integrated membrane. The resulting Zr-MOF membrane with angstrom-sized lattice apertures exhibits excellent separation performance both for gas separation and water desalination process. It was achieved H2 permeance of ~1200 GPU and H2/CO2 selectivity of ~67; water permeance of ~8 L ⋅ m-2 ⋅ h-1 ⋅ bar-1 and MgCl2 rejection of ~95 %, which are one to two orders of magnitude higher than those of state-of-the-art membranes. The molecular transport mechanism related to size-sieving effect and transition energy barrier differential of molecules and ions was revealed by density functional theory calculations. Our work provides a facile approach and fundamental insights towards developing precise molecular sieving membranes.

4.
ACS Appl Mater Interfaces ; 16(7): 8679-8687, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324753

RESUMO

Heterostructure engineering and oxygen vacancy engineering are the most promising modification strategies to reinforce the Zn2+ ion storage of vanadium oxides. Herein, a rare mixed-dimensional material (VOx), composed of V2O5 (2D), V3O7 (3D), and V6O13 (3D) heterostructures, rich in oxygen vacancies, was synthesized via thermal decomposition of layered ammonium vanadate. The VOx cathode provides an exceptional discharge capacity (411 mA h g-1 at 0.1 A g-1) and superior cycling stability (the capacity retention remains close to 100% after 800 cycles at 2 A g-1) for aqueous zinc-ion batteries (AZIBs). Ex situ characterizations confirm that the byproduct Zn3V2O7(OH)2·nH2O is generated/decomposed during discharge/charge processes. Furthermore, VOx demonstrates reversible intercalation/deintercalation of H+/Zn2+ ions, enabling efficient energy storage. Remarkably, a reversible crystal-to-amorphous transformation in the V2O5 phase of VOx during charge-discharge was observed. This investigation reveals that mixed-dimensional heterostructured vanadium oxide, with abundant oxygen vacancies, serves as a highly promising electrode material for AZIBs, further advancing the comprehension of the storage mechanism within vanadium-based cathode materials.

5.
Dalton Trans ; 53(6): 2687-2695, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38226466

RESUMO

The supramolecular crystals, Mn(15-crown-5)(MnCl4)(DMF), (1; 15-crown-5 = 1,4,7,10,13-pentaoxacyclopentadecane), were synthesized via a self-assembly strategy under ambient conditions. Comprehensive characterization of the crystals involved microanalysis for C, H, and N elements, thermogravimetric (TG) analysis, differential scanning calorimetry (DSC) and single-crystal X-ray diffraction techniques. The results reveal that 1 undergoes a two-step thermotropic and isostructural phase transition at around 217 K and 351 K upon heating. All three phases belong to the same space group (P212121) with analogous cell parameters. These two phase transitions primarily involve the thermally activated ring rotational dynamics of the 15-crown-5 molecule, with only the transition at ca. 351 K being associated with a dielectric anomaly. 1 exhibits intense luminescence with a peak at ∼600 nm and a high quantum yield of 68%. The mechanisms underlying this intense luminescence are likely linked to low-symmetry ligand fields. Additionally, 1 displays phase transition-induced luminescence enhancement behavior, and the possible mechanism is further discussed.

6.
Inorg Chem ; 63(5): 2640-2646, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38252082

RESUMO

Organic-inorganic silver halide hybrids show abundant phase transitions and thermochromism. However, it is very rare that silver halides exhibit thermochromism related to thermotropic structure phase transition. Herein, a bromoargentate hybrid, [Pr-dabco]2Ag4Br6 (1) (Pr-dabco+ = 1-propyl-1,4-diazabicyclo-[2.2.2]octan-1-ium), with tetranuclear [Ag4Br6]2- clusters was prepared and characterized by microanalysis, ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, and thermogravimetric (TG) and differential scanning calorimetry (DSC) techniques. Interestingly, 1 undergoes an irreversible structure phase transition at ∼436 K in the first heating process, which is accompanied by an abrupt color change from colorless to yellow; however, a reversible color change between pale yellow and yellow is observed in the next heating-cooling cycles. Notably, DSC measurement revealed that a reversible phase transition is associated with the change in color between pale yellow and yellow, while the powder X-ray diffraction (PXRD) patterns corresponding to pale yellow and yellow phases are quite similar to each other. These observations demonstrate that thermochromism in the next heating-cooling runs is associated with a reversible structure phase transition, which perhaps concerns the disorder-order transformation of alkyl chains in the cationic ligand [Pr-dabco]+, and relevant to the anharmonic fluctuations of the Ag-Br and Ag-N bonds, a strong electron-phonon coupling effect is seen within the bromoargentate cluster.

7.
Small ; 20(8): e2305765, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37821399

RESUMO

Solid proton electrolytes play a crucial role in various electrochemical energy storage and conversion devices. However, the development of fast proton conducting solid proton electrolytes at ambient conditions remains a significant challenge. In this study, a novel acidified nitrogen self-doped porous carbon material is presented that demonstrates exceptional superprotonic conduction for applications in solid-state proton battery. The material, designated as MSA@ZIF-8-C, is synthesized through the acidification of nitrogen-doped porous carbon, specifically by integrating methanesulfonic acid (MSA) into zeolitic imidazolate framework-derived nitrogen self-doped porous carbons (ZIF-8-C). This study reveals that MSA@ZIF-8-C achieves a record-high proton conductivity beyond 10-2  S cm-1 at ambient condition, along with good long-term stability, positioning it as a cutting-edge alternative solid proton electrolyte to the default aqueous H2 SO4 electrolyte in proton batteries.

8.
Dalton Trans ; 52(36): 12686-12694, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37609766

RESUMO

Two sets of 1D/2D lanthanide coordination polymers with formulas of Ln(oqa)3·2H2O [Hoqa = 2-(4-oxoquinolin-1(4H)-yl) acetic acid, Ln = Dy (1), Yb (2)] and Ln(oaa)2(HCOO)(H2O) [Hoaa = 2-(9-oxoacridin-10(9H)-yl) acetic acid, Ln = Dy (3), Yb (4)] have been synthesized and their physical properties were investigated. All four complexes are constructed from seven-coordinate lanthanide ions and corresponding organic linkers. The lanthanide ions in 1 and 2 adopt a pentagonal bipyramid coordination geometry, whereas the coordination geometry of lanthanide ions in 3 and 4 can be described as a capped octahedron. Slow magnetic relaxation behaviors were observed in these four products at a zero/non-zero static magnetic field. Complexes 1, 2 and 4 exhibit the characteristic emission of Ln(III) ions, whereas complex 3 shows ligand-based emission. Bright yellow light emission was also observed when a voltage was applied, demonstrating the potential of 1 for application in light-emitting diodes (LEDs). Compounds 3 and 4 are the first examples of lanthanide complexes based on Hoaa ligands.

9.
Chem Commun (Camb) ; 59(54): 8436-8439, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37335573

RESUMO

Herein, we demonstrated the unique advantage of a mechanochemical reaction to prepare a salt with hard and soft acid and base ions concurrently by solution synthesis owing to the soft acid preferring to combine with the soft base and vice versa. We prepared Bu4N1-xLixMnxPb1-xI3 (x = 0.011-0.14) by mechanochemical synthesis. The doping induced a structural phase transition at ∼342 K and much enhancement of ionic conduction above 342 K for all co-doped hybrids regarding Bu4NPbI3 because of the voids around the Mn2+/Li+ ions by doping.

10.
Dalton Trans ; 52(27): 9472-9481, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366292

RESUMO

Two haloargentate hybrids, [Me-dabco]Ag2X3 (Me-dabco = 1-methyl-1,4-diazabicyclo-[2.2.2]octan-1-ium, X = I (1) or Br (2)), with the same formula but different structures have been synthesized by a slow evaporation method and characterized by microanalysis, infrared spectroscopy, thermogravimetric, and powder X-ray diffraction techniques. Hybrid 1 consists of completely isolated [Ag4I6]2- clusters, while hybrid 2 exhibits a complicated one-dimensional (1D) chain structure formed by four different configurations of neutral chains and two dissimilar configurations of anionic chains. Hybrid 2 undergoes two reversible order-disorder phase transitions, while hybrid 1 displays one reversible and one irreversible structural phase transition. Both 1 and 2 displayed step-like dielectric anomalies in the vicinity of the phase transition temperature. The corresponding dielectric constants in the high dielectric states are approximately 13 and 6 times higher than those in the low dielectric states for 1 and 2, respectively. Interestingly, the subtle change of halides from I- to Br- significantly affects the aggregated structure of haloargentate, the phase transition, and dielectric behaviors, revealing the typical 'butterfly effect' with the ion radii of halides in these two haloargentate hybrids.

11.
Dalton Trans ; 52(26): 8918-8926, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37341120

RESUMO

A thermochromic or mechanochromic material can switch between at least two stable states in response to changes in temperature or static pressure/strain. In this study, we investigated a Ni-dithiolene dianion salt, 1,1'-diheptyl-4,4'-bipyridinium bis(maleonitriledithiolato)nickelate (1), and found that its cations and anions stack alternately to form a uniform mixed stack. These mixed stacks then combine to form a molecular solid through Coulomb and van der Waals interactions. Upon heating, 1 undergoes a reversible phase transition at around 340/320 K during the first heating/cooling cycle, resulting in rapid thermochromism with a color change from green (stable state) to red (metastable state) within a few seconds. This is the first report of a crystal of bis(maleonitriledithiolato)nickelate(II) salt with green color. Additionally, 1 exhibits irreversible mechanochromism, intense near-IR absorbance, and a dielectric anomaly. The structural phase transition is responsible for these properties, as it induces alterations in the π-orbital overlap between the anion and cation within a mixed stack. The intense near-IR absorbance arises from the ion-pair charge transfer transition from [Ni(mnt)2]2- to 4,4'-bipyridinium.

12.
Inorg Chem ; 62(14): 5791-5798, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36995684

RESUMO

Two organic-inorganic manganese(II) halide hybrids (OIMHs) with formulas of [(TEA)(TMA)]MnCl4 (1) and [(TPA)(TMA)3](MnCl4)2 (2) (TEA = tetraethylammonium, TMA = tetramethylammonium, and TPA = tetrapropylammonium) were synthesized by a mixed-ligand strategy. Both compounds crystallize in the acentric space group and are composed of isolated [MnCl4]2- tetrahedral units separated by two types of organic cations. They show high thermal stability and emit strong green light with different emission bandwidths, quantum yields, and high-temperature photostability. Remarkably, the quantum yield of 1 can reach up to 99%. Due to the high thermal stability and quantum yield of 1 and 2, green light-emitting diodes (LEDs) were fabricated. Furthermore, mechanoluminescence (ML) was observed in 1 and 2 when stress was applied. The ML spectrum of 1 is similar to the photoluminescence (PL) spectrum, suggesting ML and PL emissions come from the same transition of Mn(II) ions. Finally, rewritable anticounterfeiting printing and information storage were achieved by utilizing the outstanding photophysical properties and ionic features of the products. The printed images still remain clear after several cycles, and the information stored on the paper can be read out by a UV lamp and commercial mobile phones.

13.
Dalton Trans ; 52(17): 5514-5522, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37000590

RESUMO

Stimuli-responsive smart materials have applications in a range of technologies. Herein, we present a hybrid (1), built from Me3EtN+ organic cations and {Cu2I3-}∞ inorganic chains with Cu⋯Cu metal⋯metal interactions. The two-step phase transition undergone in 1 on the first heating and the phase transition at a lower temperature show symmetry-broken features, leading to switchable dielectrics; the one at a higher temperature displays isomorphic characteristics. Besides the switchable dielectrics, 1 exhibited other multi-stimuli-responsive functionalities, including thermochromism and piezochromism. Combining temperature-dependent powder and single crystal X-ray diffraction, as well as variable-temperature UV-visible absorption spectrum and EPR spectrum analyses, it is demonstrated that the thermochromism is due to the synergy of anharmonic fluctuations with electron-phonon couplings, and the piezochromism arises from compression inducing a lattice distortion in 1. Our study provides insight into understanding the thermochromic and piezochromic mechanisms of cuprous halide-based hybrids, and paves a pathway for designing new multi-stimuli-responsive hybrid materials.

14.
Dalton Trans ; 52(4): 1089-1095, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602171

RESUMO

Kaolinite possesses a structure with asymmetrically layered 1 : 1 dioctahedral aluminum silicate, and this structural property provides a useful platform for creating new cost-efficient functional materials that require noncentrosymmetric crystal packing. In this study, we prepared three covalently grafted kaolinites of propanediol (PD)/butanediol (BD)/glycerol (GL) by forming Al-O-C bonds between the OH groups of PD/BD/GL and the surface of kaolinite (K). Three covalently grafted kaolinites (K-PD, K-BD and K-GL) were characterized by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and microanalysis for C, H and N elements. The test of K-PD, K-BD and K-GL stirred with water at ambient conditions for 3 days demonstrated these hybrids showing extra high chemical stability to water. The dielectric spectra of three hybrids show two-step dielectric relaxation in the range of 1-107 Hz, and the P-E measurements revealed the existence of ferroelectricity at room temperature with the spontaneous polarization, the remanent polarization and the coercive field of ∼0.014 µC cm-2, ∼0.008 µC cm-2 and ∼0.426 kV cm-1 for K-PD, ∼0.017 µC cm-2, ∼0.011 µC cm-2 and ∼0.645 kV cm-1 for K-BD, and ∼0.018 µC cm-2, ∼0.011 µC cm-2 and ∼0.141 kV cm-1 for K-GL, respectively.


Assuntos
Glicerol , Caulim , Caulim/química , Difração de Raios X , Espectrofotometria Infravermelho , Propilenoglicol , Água/química
15.
ACS Appl Mater Interfaces ; 15(2): 2933-2939, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36602325

RESUMO

Zirconium-based metal-organic frameworks (Zr-MOFs) have been demonstrated as potent catalysts for the hydrolytic detoxification of organophosphorus nerve agents and their simulants. However, the practical implementation of these Zr-MOFs is limited by the poor processability of their powdered form and the necessity of water media buffered by a volatile liquid base in the catalytic reaction. Herein, we demonstrate the efficient solid-state hydrolysis of a nerve agent simulant (dimethyl-4-nitrophenyl phosphate, DMNP) catalyzed by Zr-MOF-based mixed matrix membranes. The mixed matrix membranes were fabricated by incorporating MOF-808 into the blending matrix of poly(vinylidene fluoride) (PVDF), poly(vinylpyrrolidone) (PVP), and imidazole (Im), in which MOF-808 provides highly active catalytic sites, the hydrophilic PVP helps to retain water for promoting the hydrolytic reaction, and Im serves as a base for catalytic site regeneration. Impressively, the mixed matrix membranes displayed excellent catalytic performance for the solid-state hydrolysis of DMNP under high humidity, representing a significant step toward the practical application of Zr-MOFs in chemical protective layers against nerve agents.


Assuntos
Estruturas Metalorgânicas , Agentes Neurotóxicos , Polímeros , Organofosfatos , Água
16.
Inorg Chem ; 61(49): 20057-20063, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36455074

RESUMO

The development of proton conductors capable of working at above 100 °C is of great significance for proton exchange membrane electrolysis cells (PEMECs) and proton exchange membrane fuel cells (PEMFCs) but remains to be an enormous challenge to date. In this work, we demonstrate for the first time that the N-doped porous carbon derived from metal-organic frameworks (MOFs) with great superiority can be exploited for high-performing proton conductors at above 100 °C. Through the pyrolysis of ZIF-8, the N-doped porous carbon (ZIF-8-C) featuring high chemical resistance to Fenton's reagent was readily prepared and then served as a robust host to accommodate H3PO4 molecules for proton transport. Upon impregnation with H3PO4, the resulting PA@ZIF-8-C exhibits low water swelling and high proton conduction of over 10-2 S cm-1 at a temperature above 100 °C, which is superior to many reported proton conductors. This work provides a new approach for the design of high-performing proton conductors at above 100 °C.


Assuntos
Estruturas Metalorgânicas , Carbono , Prótons , Porosidade , Membrana Celular
17.
Dalton Trans ; 51(39): 15158-15165, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36149368

RESUMO

The supramolecular lead iodide perovskite crystals, {[NH4(18-crown-6)]PbI3}∞ (1), (18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane), was successfully achieved by a facile solvent evaporation strategy using a DMF solution containing equal molar quantities of PbI2, NH4I and 18-crown-6. The supramolecular perovskite was characterized by microanalysis for C, H and N elements, thermogravimetric (TG) analysis, differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and single crystal X-ray diffraction techniques. DSC measurements demonstrated that 1 experiences a two-step thermotropic phase transition around 333 K and 383 K, respectively. The phase transition is relevant to the disorder-order transformation of the 18-crown-6 molecule at ∼333 K, while both breaking-symmetry and ordered-disordered transformation of the 18-crown-6 molecule occurred at ∼383 K. In addition, the sharp change of the PbI6 coordination octahedron distortion degree plays a synergistic role in the two-step phase transition. The dielectric relaxation occurs above 243 K in 1 and is mainly attributed to the displacement of the NH4+ ions relative to the ring of the 18-crown-6 molecule and {PbI3}∞ chain induced by an AC electrical field.

18.
Dalton Trans ; 51(33): 12484-12493, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35916573

RESUMO

A series of tetranuclear coordination clusters [Ln4L2(HL)2(µ3-OH)2(NO3)2](NO3)2 [Ln = Dy (1·3CH3CN·5H2O), Gd (2·4CH3CN·5H2O), H2L = 6,6'-dimethoxy-2,2'-[2,2-dimethylpropane-1,3-diylbis-(nitrilomethylidyne)] diphenol] and dinuclear complexes [LnZnL(NO3)3(H2O)]·2CH3CN [Ln = Dy (3), Er (4), Yb (5), Lu (6)] were prepared and characterized. Static magnetic measurements revealed the presence of ferromagnetic interactions between the Dy(III) ions and weak antiferromagnetic couplings between the Gd(III) ions in 1 and 2. Dynamic magnetic studies showed that complexes 1 and 3 exhibit slow magnetic relaxation under a zero static field as expected for single molecule magnet (SMM) behavior, whereas complex 4 is a field-induced SMM. Clear hysteresis loops were observed for 1 and 3 at 2 K, verifying their SMM behavior. Luminescence investigations demonstrated that complexes 1 and 2 show ligand-based emission and can act as luminescence thermometers below 100 K, whereas complexes 3 and 5 display the characteristic emission of lanthanide ions. From the high-resolution emission spectra of 3 and 5, the energy gaps between the ground state and excited states of Dy(III) and Yb(III) ions were determined.

19.
J Phys Chem Lett ; 13(32): 7405-7412, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35927064

RESUMO

Semiconductors that emit intrinsic white light are considered next-generation lighting sources. Herein, the broadband emission of one-dimensional (1D) lead halide perovskites, TMAPbBr3-xIx (x = 0, 1, 1.5, 2, 3; TMA+ = tetramethylammonium), is systematically investigated. Lattice distortion causes the conversion of dark excitons to bright self-trapped excitons. Owing to its strongly localized exciton recombination and high absorption probability, TMAPbBr3 is the most viable in this family. A delocalized hole increases the nonradiative recombination rate of excitons in TMAPbBr3-xIx alloys. In 1D TMAPbBr3-xIx perovskites, the vibration mode of the Pb-X bond stretching of the PbX6 octahedra contributes more to the effect on exciton-phonon coupling than the mode of the X-Pb-X angle bending. Pb-X bond stretching and spontaneous polarization can tune exciton binding energy. This systematic study of excitonic behavior in 1D compounds relates the nature of ground states to the unknown excited states and provides the rational design of materials with stable and efficient broadband emission.

20.
ACS Appl Mater Interfaces ; 13(50): 60084-60091, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889608

RESUMO

Crystalline porous materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been demonstrated to be versatile material platforms for the development of solid proton conductors. However, most crystalline porous proton conductors suffer from decreasing proton conductivity with increasing temperature due to releasing water molecules, and this disadvantage severely restricts their practical application in electrochemical devices. In this work, for the first time, hydrophilic carbon dots (CDs) were utilized to hybridize with high proton conductivity MOF-802, which is a model of MOF proton conductors, aiming to improve its water-retention capacity and thus enhance proton conduction. The resultant CDs@MOF-802 exhibits impregnable proton conduction with increasing temperature, and the proton conductivity reaches 10-1 S cm-1, much superior to that of MOF-802, making CDs@MOF-802 one of the most efficient MOF proton conductors reported so far. This study provides a new strategy to improve the water-retention capacity of porous proton conductors and further realize excellent proton conduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA