Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr Health Aging ; 28(7): 100284, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833765

RESUMO

BACKGROUND: As the important factors in cognitive function, dietary habits and metal exposures are interactive with each other. However, fewer studies have investigated the interaction effect of them on cognitive dysfunction in older adults. METHODS: 2,445 registered citizens aged 60-85 years from 51 community health centers in Luohu District, Shenzhen, were recruited in this study based on the Chinese older adult cohort. All subjects underwent physical examination and Mini-cognitive assessment scale. A semi quantitative food frequency questionnaire was used to obtain their food intake frequency, and 21 metal concentrations in their urine were measured. RESULTS: Elastic-net regression model, a machine learning technique, identified six variables that were significantly associated with cognitive dysfunction in older adults. These variables included education level, gender, urinary concentration of arsenic (As) and cadmium (Cd), and the frequency of monthly intake of egg and bean products. After adjusting for multiple factors, As and Cd concentrations were positively associated with increased risk of mild cognitive impairment (MCI) in the older people, with OR values of 1.19 (95% CI: 1.05-1.42) and 1.32 (95% CI: 1.01-1.74), respectively. In addition, older adults with high frequency of egg intake (≥30 times/month) and bean products intake (≥8 times/month) had a reduced risk of MCI than those with low protein egg intake (<30 times/month) and low bean products intake (<8 times/month), respectively. Furthermore, additive interaction were observed between the As exposure and egg products intake, as well as bean products. Cd exposure also showed additive interactions with egg and bean products intake. CONCLUSIONS: The consumption of eggs and bean products, as well as the levels of exposure to the heavy metals Cd and As, have been shown to have a substantial influence on cognitive impairment in the elderly population.


Assuntos
Arsênio , Cádmio , Cognição , Disfunção Cognitiva , Dieta , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Arsênio/urina , Cádmio/urina , China/epidemiologia , Cognição/efeitos dos fármacos , Estudos de Coortes , População do Leste Asiático , Ovos , Fatores de Risco
2.
Sci Total Environ ; 932: 172876, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692326

RESUMO

Nanoplastics (NPs) and triclosan (TCS) are ubiquitous emerging environmental contaminants detected in human samples. While the reproductive toxicity of TCS alone has been studied, its combined effects with NPs remain unclear. Herein, we employed Fourier transform infrared spectroscopy and dynamic light scattering to characterize the coexposure of polystyrene nanoplastics (PS-NPs, 50 nm) with TCS. Then, adult zebrafish were exposed to TCS at environmentally relevant concentrations (0.361-48.2 µg/L), with or without PS-NPs (1.0 mg/L) for 21 days. TCS biodistribution in zebrafish tissues was investigated using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Reproductive toxicity was assessed through gonadal histopathology, fertility tests, changes in steroid hormone synthesis and gene expression within the hypothalamus-pituitary-gonad-liver (HPGL) axis. Transcriptomics and proteomics were applied to explore the underlying mechanisms. The results showed that PS-NPs could adsorb TCS, thus altering the PS-NPs' physical characteristics. Our observations revealed that coexposure with PS-NPs reduced TCS levels in the ovaries, livers, and brains of female zebrafish. Conversely, in males, coexposure with PS-NPs increased TCS levels in the testes and livers, while decreasing them in the brain. We found that co-exposure mitigated TCS-induced ovary development inhibition while exacerbated TCS-induced spermatogenesis suppression, resulting in increased embryonic mortality and larval malformations. This co-exposure influenced the expression of genes linked to steroid hormone synthesis (cyp11a1, hsd17ß, cyp19a1) and attenuated the TCS-decreased estradiol (E2) in females. Conversely, testosterone levels were suppressed, and E2 levels were elevated due to the upregulation of specific genes (cyp11a1, hsd3ß, cyp19a1) in males. Finally, the integrated analysis of transcriptomics and proteomics suggested that the aqp12-dctn2 pathway was involved in PS-NPs' attenuation of TCS-induced reproductive toxicity in females, while the pck2-katnal1 pathway played a role in PS-NPs' exacerbation of TCS-induced reproductive toxicity in males. Collectively, PS-NPs altered TCS-induced reproductive toxicity by disrupting the HPGL axis, with gender-specific effects.


Assuntos
Poliestirenos , Reprodução , Triclosan , Poluentes Químicos da Água , Peixe-Zebra , Animais , Triclosan/toxicidade , Poliestirenos/toxicidade , Feminino , Masculino , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Fatores Sexuais
3.
Heliyon ; 10(8): e26832, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628727

RESUMO

Alzheimer's disease is the most common form of dementia and is characterized by cognitive impairment. The disruption of autophagosome-lysosome function has been linked to the pathogenesis of Alzheimer's disease. Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphorus flame retardant that has the potential to cause neuronal damage. We found that TDCIPP significantly increased the expression of ß-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), presenilin-1 (PS1) and Aß42. Proteomic studies with TMT labeling revealed changes in the profiles of N2a-APPswe cells after exposure to TDCIPP. Proteomic and bioinformatics analyses revealed that lysosomal proteins were dysregulated in N2a-APPswe cells after treatment with TDCIPP. The LC3, P62, CTSD, and LAMP1 levels were increased after TDCIPP exposure, and dysregulated protein expression was validated by Western blotting. The exposure to TDCIPP led to the accumulation of autophagosomes, and this phenomenon was enhanced in the presence of chloroquine (CQ). Our results revealed for the first time that TDCIPP could be a potential environmental risk factor for AD development. The inhibition of autophagosome-lysosome fusion may have a significant impact on the generation of Aß1-42 in response to TDCIPP.

4.
J Hazard Mater ; 470: 134298, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626679

RESUMO

4-methylbenzylidene camphor (4-MBC) and micro/nanoplastics (MNPs) are common in personal care and cosmetic products (PCCPs) and consumer goods; however, they have become pervasive environmental contaminants. MNPs serve as carriers of 4-MBC in both PCCPs and the environment. Our previous study demonstrated that 4-MBC induces estrogenic effects in zebrafish larvae. However, knowledge gaps remain regarding the sex- and tissue-specific accumulation and potential toxicities of chronic coexposure to 4-MBC and MNPs. Herein, adult zebrafish were exposed to environmentally realistic concentrations of 4-MBC (0, 0.4832, and 4832 µg/L), with or without polystyrene nanoplastics (PS-NPs; 50 nm, 1.0 mg/L) for 21 days. Sex-specific accumulation was observed, with higher concentrations in female brains, while males exhibited comparable accumulation in the liver, testes, and brain. Coexposure to PS-NPs intensified the 4-MBC burden in all tested tissues. Dual-omics analysis (transcriptomics and proteomics) revealed dysfunctions in neuronal differentiation, death, and reproduction. 4-MBC-co-PS-NP exposure disrupted the brain histopathology more severely than exposure to 4-MBC alone, inducing sex-specific neurotoxicity and reproductive disruptions. Female zebrafish exhibited autism spectrum disorder-like behavior and disruption of vitellogenesis and oocyte maturation, while male zebrafish showed Parkinson's-like behavior and spermatogenesis disruption. Our findings highlight that PS-NPs enhance tissue accumulation of 4-MBC, leading to sex-specific impairments in the nervous and reproductive systems of zebrafish.


Assuntos
Cânfora , Cânfora/análogos & derivados , Peixe-Zebra , Animais , Masculino , Feminino , Cânfora/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Poliestirenos/toxicidade , Nanopartículas/toxicidade , Reprodução/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Compostos Benzidrílicos/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
5.
PeerJ ; 12: e17000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435984

RESUMO

Pit mud (PM) is among the key factors determining the quality of Nongxiangxing baijiu, a Chinese liquor. Microorganisms present inside PM are crucial for the unique taste and flavor of this liquor. In this study, headspace solid-phase microextraction was used in combination with gas chromatography and high-throughput sequencing to determine the volatile compounds and microbial community structure of 10- and 40-year PM samples from different spaces. The basic physicochemical properties of the PM were also determined. LEfSe and RDA were used to systematically study the PM in different time spaces. The physicochemical properties and ester content of the 40-year PM were higher than those of the 10-year PM, but the spatial distribution of the two years PM samples exhibited no consistency, except in terms of pH, available phosphorus content, and ester content. In all samples, 29 phyla, 276 families, and 540 genera of bacteria, including four dominant phyla and 20 dominant genera, as well as eight phyla, 24 families, and 34 genera of archaea, including four dominant phyla and seven dominant genera, were identified. The LEfSe analysis yielded 18 differential bacteria and five differential archaea. According to the RDA, the physicochemical properties and ethyl caproate, ethyl octanoate, hexanoic acid, and octanoic acid positively correlated with the differential microorganisms of the 40-year PM, whereas negatively correlated with the differential microorganisms of the 10-year PM. Thus, we inferred that Caproiciproducens, norank_f__Caloramatoraceae, and Methanobrevibacter play a dominant and indispensable role in the PM. This study systematically unveils the differences that affect the quality of PM in different time spaces and offers a theoretical basis for improving the declining PM, promoting PM aging, maintaining cellars, and cultivating an artificial PM at a later stage.


Assuntos
Envelhecimento , Microbiota , Humanos , Líquido Amniótico , Archaea , Ésteres , Microbiota/genética
6.
Adv Mater ; 36(25): e2401171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497304

RESUMO

Technologies that can simultaneously generate electricity and desalinate seawater are highly attractive and required to meet the increasing global demand for power and clean water. Here, a bifunctional solar evaporator that features continuous electric generation in seawater without salt accumulation is developed by rational design of polyelectrolyte hydrogel-functionalized photothermal sponge. This evaporator not only exhibits an unprecedentedly high water evaporation rate of 3.53 kg m-2 h-1along with 98.6% solar energy conversion efficiency but can also uninterruptedly deliver a voltage output of 0.972 V and a current density of 172.38 µA cm-2 in high-concentration brine over a prolonged period under one sun irradiation. Many common electronic devices can be driven by simply connecting evaporator units in series or in parallel without any other auxiliaries. Different from the previously proposed power generation mechanism, this study reveals that the water-enabled proton concentration fields in intermediate water region can also induce an additional ion electric field in free water region containing solute, to further enhance electricity output. Given the low-cost materials, simple self-regeneration design, scalable fabrication processes, and stable performance, this work offers a promising strategy for addressing the shortages of clean water and sustainable electricity.

7.
Food Chem Toxicol ; 186: 114519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369053

RESUMO

N-Nitrosodiethylamine (NDEA), a carcinogen in some foods and medications, is linked to liver damage similar to non-alcoholic fatty liver disease (NAFLD). This study explores how NDEA disrupts liver lipid metabolism. Sprague-Dawley rats were given two doses of NDEA (100 mg/kg) orally, 24 h apart. Liver response was assessed through tissue staining, blood tests, and biochemical markers, including fatty acids, lipid peroxidation, and serum very-low density lipoprotein (VLDL) levels. Additionally, lipidomic analysis of liver tissues and serum was performed. The results indicated significant hepatic steatosis (fat accumulation in the liver) following NDEA exposure. Blood analysis showed signs of inflammation and liver damage. Biochemical tests revealed decreased liver protein synthesis and specific enzyme alterations, suggesting liver cell injury but maintaining mitochondrial function. Increased fatty acid levels without a rise in lipid peroxidation were observed, indicating fat accumulation. Lipidomic analysis showed increased polyunsaturated triglycerides in the liver and decreased serum VLDL, implicating impaired VLDL transport in liver dysfunction. In conclusion, NDEA exposure disrupts liver lipid metabolism, primarily through the accumulation of polyunsaturated triglycerides and impaired fat transport. These findings provide insight into the mechanisms of NDEA-induced liver injury and its progression to hepatic steatosis.


Assuntos
Dietilnitrosamina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Triglicerídeos/metabolismo , Dietilnitrosamina/toxicidade , Lipoproteínas VLDL/metabolismo , Ratos Sprague-Dawley , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Dieta Hiperlipídica
8.
Adv Mater ; 36(23): e2313090, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38385793

RESUMO

In the last decade, interfacial solar steam generation (ISSG), powered by natural sunlight garnered significant attention due to its great potential for low-cost and environmentally friendly clean water production in alignment with the global decarbonization efforts. This review aims to share the knowledge and engage with a broader readership about the current progress of ISSG technology and the facing challenges to promote further advancements toward practical applications. The first part of this review assesses the current strategies for enhancing the energy efficiency of ISSG systems, including optimizing light absorption, reducing energy losses, harvesting additional energy, and lowering evaporation enthalpy. Subsequently, the current challenges faced by ISSG technologies, notably salt accumulation and bio-fouling issues in practical applications, are elucidated and contemporary methods are discussed to overcome these challenges. In the end, potential applications of ISSG, ranging from initial seawater desalination and industrial wastewater purification to power generation, sterilization, soil remediation, and innovative concept of solar sea farm, are introduced, highlighting the promising potential of ISSG technology in contributing to sustainable and environmentally conscious practices. Based on the review and in-depth understanding of these aspects, the future research focuses are proposed to address potential issues in both fundamental research and practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA