Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Onco Targets Ther ; 17: 131-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405176

RESUMO

Objective: This work aimed to explore the prognostic risk factors of lung cancer (LC) patients and establish a line chart prediction model. Methods: A total of 322 LC patients were taken as the study subjects. They were randomly divided into a training set (n = 202) and a validation set (n = 120). Basic information and laboratory indicators were collected, and the progression-free survival (PFS) and overall survival (OS) were followed up. Single-factor and cyclooxygenase (COX) multivariate analyses were performed on the training set to construct a Nomogram prediction model, which was validated with 120 patients in the validation set, and Harrell's consistency was analyzed. Results: Single-factor analysis revealed significant differences in PFS (P<0.05) between genders, body mass index (BMI), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), squamous cell carcinoma antigen (SCCA), treatment methods, treatment response evaluation, smoking status, presence of pericardial effusion, and programmed death ligand 1 (PD-L1) at 0 and 1-50%. Significant differences in OS (P<0.05) were observed for age, tumor location, treatment methods, White blood cells (WBC), uric acid (UA), CA125, pro-gastrin-releasing peptide (ProGRP), SCCA, cytokeratin fragment 21 (CYFRA21), and smoking status. COX analysis identified male gender, progressive disease (PD) as treatment response, and SCCA > 1.6 as risk factors for LC PFS. The consistency indices of the line chart models for predicting PFS and OS were 0.782 and 0.772, respectively. Conclusion: Male gender, treatment response of PD, and SCCA > 1.6 are independent risk factors affecting the survival of LC patients. The PFS line chart model demonstrates good concordance.

2.
Plant Biotechnol J ; 22(6): 1435-1452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38194521

RESUMO

Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.


Assuntos
Betaína , Flavonoides , Estudo de Associação Genômica Ampla , Lycium , Polimorfismo de Nucleotídeo Único , Espermidina , Flavonoides/metabolismo , Lycium/genética , Lycium/metabolismo , Espermidina/metabolismo , Betaína/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Genoma de Planta/genética , Frutas/genética , Frutas/metabolismo
3.
Acta Biomater ; 174: 91-103, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38092251

RESUMO

Sulfur dioxide (SO2), long considered to be a harmful atmospheric pollutant, has recently been posited as the fourth gasotransmitter, as it is produced endogenously in mammals and has important pathophysiological effects. The field of tumor therapy has witnessed a paradigm shift with the emergence of SO2-based gas therapy. This has been possible because SO2 is a potent glutathione consumer that can promote the production of reactive oxygen species, eventually leading to oxidative-stress-induced cancer cell death. Nevertheless, this therapeutic gas cannot be directly administrated in gaseous form. Thus, various nano formulations incorporating SO2 donors or prodrugs capable of storing and releasing SO2 have been developed in an attempt to achieve active/passive intratumoral accumulation and SO2 release in the tumor microenvironment. In this review article, the advances over the past decade in nanoplatforms incorporating sulfur SO2 prodrugs to provide controlled release of SO2 for cancer therapy are summarized. We first describe the synthesis of polypeptide SO2 prodrugs to overcome multiple drug resistance that was pioneered by our group, followed by other macromolecular SO2 prodrug structures that self-assemble into nanoparticles for tumor therapy. Second, we describe nanoplatforms composed of various small-molecule SO2 donors with endogenous or exogenous stimuli responsiveness, including thiol activated, acid-sensitive, and ultraviolet or near-infrared light-responsive SO2 donors, which have been used for tumor inhibition. Combinations of SO2 gas therapy with photodynamic therapy, chemotherapy, photothermal therapy, sonodynamic therapy, and nanocatalytic tumor therapy are also presented. Finally, we discuss the current limitations and challenges and the future outlook for SO2-based gas therapy. STATEMENT OF SIGNIFICANCE: Gas therapy is attracting increasing attention in the scientific community because it is a highly promising strategy against cancer owing to its inherent biosafety and avoidance of drug resistance. Sulfur dioxide (SO2) is recently found to be produced endogenously in mammals with important pathophysiological effects. This review summarizes recent advances in SO2 releasing nanosystems for cancer therapy, including polymeric prodrugs, endogenous or exogenous stimulus-activated SO2 donors delivered by nanoplatform and combination therapy strategies.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Dióxido de Enxofre/farmacologia , Dióxido de Enxofre/química , Dióxido de Enxofre/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Nanopartículas/química , Mamíferos/metabolismo , Microambiente Tumoral
4.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686218

RESUMO

Dysregulation of clusterin (CLU) has been demonstrated in many cancers and has been proposed as a regulator of carcinogenesis. However, the roles of CLU in gliomas remain unclear. The expression of CLU was assessed using TIMER2.0, GEPIA2, and R package 4.2.1 software, leveraging data from TCGA and/or GTEx databases. Survival analysis and Cox regression were employed to investigate the prognostic significance of CLU. Immune infiltration was evaluated utilizing TIMER2.0, ESTIMATE, and CIBERSORT. The findings reveal the dysregulated expression of CLU in many cancers, with a marked increase observed in glioblastoma and lower-grade glioma (LGG). High CLU expression indicated worse survival outcomes and was an independent risk factor for the prognosis in LGG patients. CLU was involved in immune status as evidenced by its strong correlations with immune and stromal scores and the infiltration levels of multiple immune cells. Additionally, CLU was co-expressed with multiple immune-related genes, and high CLU expression was associated with the activation of immune-related pathways, such as binding to the antigen/immunoglobulin receptor and aiding the cytokine and cytokine receptor interaction. In conclusion, CLU appears to play crucial roles in tumor immunity within gliomas, highlighting its potential as a biomarker or target in glioma immunotherapy.


Assuntos
Glioblastoma , Glioma , Humanos , Carcinogênese , Clusterina/genética , Glioma/genética , Prognóstico
5.
Front Microbiol ; 14: 1169444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455734

RESUMO

Introduction: The soil bacteria promote the circulation conversion of lake nutrients and play an important role in maintaining the balance of the lake ecosystem. Few studies have investigated the association of seasonal variation in bacteria and environmental factors in inland freshwater lake wetlands. Nansi Lake is a large shallow freshwater lake in northern China. It is an important hub of the eastern route of the South-to-North Water Diversion Project. Methods: In this study, bacterial 16S rRNA genes were used to analyze the variation of soil bacterial community diversity in Nansi Lake Wetland and its influencing factors in different seasons. Results: It is showed that the phylum, family, and genus with the largest relative abundance in the soil of Nansi Lake Wetland are Proteobacteria, Nitrosomonadaceae, and MND1, respectively. There were significant seasonal differences in soil bacterial diversity in Nansi Lake Wetland, which was significantly higher in summer than in winter. Seasonal variation in environmental factors was significantly correlated with the variation in bacterial communities. Temperature and the content of available phosphorus may be the key factors influencing seasonal variation in bacterial diversity. Discussion: The results of this study further enhance our understanding of the relationship between bacterial community diversity and environmental factors in the lake wetland ecosystem, which can provide scientific data for the conservation of Nansi Lake Wetland.

6.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119492, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37207914

RESUMO

Chemotherapeutic drugs are used routinely for treatment for myelodysplastic syndrome (MDS) patients but are ineffective in a substantial proportion of patients. Abnormal hematopoietic microenvironments, in addition to spontaneous characteristics of malignant clones, contribute to ineffective hematopoiesis. In our study, we found expression of enzyme ß1,4-galactosyltransferase 1 (ß4GalT1), which regulates N-acetyllactosamine (LacNAc) modification of proteins, is elevated in bone marrow stromal cells (BMSCs) of MDS patients, and also contributes to drug ineffectiveness through a protective effect on malignant cells. Our investigation of the underlying molecular mechanism revealed that ß4GalT1-overexpressing BMSCs promoted MDS clone cells resistant to chemotherapeutic drugs and also showed enhanced secretion of cytokine CXCL1 through degradation of tumor protein p53. Chemotherapeutic drug tolerance of myeloid cells was inhibited by application of exogenous LacNAc disaccharide and blocking of CXCL1. Our findings clarify the functional role of ß4GalT1-catalyzed LacNAc modification in BMSCs of MDS. Clinical alteration of this process is a potential new strategy that may substantially enhance effectiveness of therapies for MDS and other malignancies, by targeting a niche interaction.


Assuntos
Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células da Medula Óssea/metabolismo , Hematopoese
7.
Environ Toxicol ; 37(7): 1629-1641, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35258167

RESUMO

Cardiomyocyte dysfunction and apoptosis induced by ischemia-hypoxia are common features of many acute and chronic heart diseases. WW domain-containing E3 ubiquitin ligase (WWP2) has been identified as an important regulator in pathogenesis of some health-threatening diseases. Although a couple of recent reports prompted the potential role of WWP2 in heart dysfunction, however, its exact role and how its expression was regulated in ischemic-hypoxic cardiomyocytes are still elusive. Here, we found that WWP2 protein level was induced in anoxia/reoxygenation (A/R) treated cardiomyocytes in a time-dependent manner, accompanied by synchronous expression of LINC01588 and HNRNPL. Knockdown of LINC01588 increased cardiomyocyte apoptosis, the level of oxidative stress, and expression of pro-inflammatory cytokine genes, down-regulated the expression of WWP2 and promoted expression of SEPT4 gene that contributed to cardiomyocyte dysfunction and was a target gene of WWP2. LINC01588 overexpression improved the functions of A/R treated cardiomyocytes, up-regulated WWP2 and reduced SEPT4 expression. In the mechanism exploration, we found that LINC01588 could directly bind with HNRNPL protein that could interact with WWP2, suggesting that WWP2 was involved in the regulation of LINC01588 in A/R treated cardiomyocytes. Moreover, WWP2 inhibition declined the protective role of LINC01588 in cardiomyocyte dysfunction induced by A/R. Finally, we demonstrated that LINC01588 overexpression improved acute myocardial infarction in mice in vivo. In conclusion, LINC01588 improved A/R-induced cardiomyocyte dysfunction by interacting with HNRNPL and promoting WWP2-mediated degradation of SEPT4.


Assuntos
Miócitos Cardíacos , RNA Longo não Codificante , Ribonucleoproteínas , Ubiquitina-Proteína Ligases , Animais , Apoptose/fisiologia , Hipóxia Celular , Camundongos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Bioengineered ; 12(1): 1530-1542, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33934686

RESUMO

Reportedly, ubiquitin-conjugating enzyme E2T (UBE2T) is closely related to the progression of several malignancies. This work is aimed to probe the role of UBE2T in the progression of hepatocellular carcinoma (HCC) patients. The microarray analysis was executed to screen the differentially expressed genes (DEGs) in HCC tissues. The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis (GEPIA2) databases, PCR and immunohistochemistry were utilized to validate the dysregulation of UBE2T in HCC. Kaplan-Meier analysis was employed to determine the relationship between UBE2T expression and the prognosis of HCC patients. PCR was carried out to detect UBE2T protein expression in HCC cell lines. Cell Counting Kit-8 (CCK-8) assay and 5-bromo-2'-deoxyuridine (BrdU) experiments were conducted to examine the proliferation of HCC cells. Scratch healing and Transwell experiments were conducted to examine the migration of HCC cells. Bioinformatics analysis and dual-luciferase reporter gene experiments predicted and validated the targeting relationship with miR-212-5p and UBE2T. We found that UBE2T expression was remarkably up-modulated in HCC tissues and cell lines, and its high expression was linked to a worse prognosis in HCC patients. UBE2T overexpression enhanced HCC cell proliferation and migration. Additionally, UBE2T was verified as a downstream target of miR-212-5p. In conclusion, UBE2T overexpression is markedly linked to unfavorable prognosis in HCC patients. UBE2T, regulated by miR-212-5p, significantly enhances the malignant phenotypes of HCC cells, which can be used as a target for HCC diagnosis and prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enzimas de Conjugação de Ubiquitina , Adolescente , Adulto , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Prognóstico , Transcriptoma/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Regulação para Cima/genética , Adulto Jovem
9.
Eur J Pharmacol ; 872: 172977, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32007500

RESUMO

Exosomes are membrane-derived vesicles and play a critical role in cell signaling by transferring RNAs and proteins to target cells through fusion with the cell membrane. Long non-coding RNA-small nucleolar RNA host gene 9 (lncRNA-SNHG9) was proven to be an important element in lncRNA-mRNA interaction networks during adipocyte differentiation, suggesting its potential involvement in the development of obesity, an important risk factor of cardiovascular and cerebrovascular endothelial dysfunction. However, the role of lncRNA-SNHG9 within the exosome in endothelial dysfunction of obese patients is largely unknown. In this study, we proved that adipocytes-derived exosomal SNHG9 were downregulated in obese persons and further decreased in obese individuals with endothelial dysfunction. Functional experimentations demonstrated that adipocytes-derived exosomal SNHG9 alleviated inflammation and apoptosis in endothelial cells. Bioinformatic analysis revealed that there was a potential interaction between SNHG9 and the TNF receptor type 1-associated death domain protein (TRADD) mRNA. Then, RNA-binding protein immunoprecipitation assay based on Ago2 antibody and ribonuclease protection assay demonstrated that exosomal SNHG9 directly bound to a specific region in TRADD mRNA sequence and formed an RNA dimeric inducible silencing complex. Moreover, knockdown of TRADD markedly inhibited inflammation and apoptosis in human umbilical vein endothelial cells (HUVECs), whereas overexpression of TRADD dramatically neutralized the protective effect of exosomal SNHG9 on epithelial dysfunction. Therefore, SNHG9 could prevent endothelial dysfunction in obese patients by suppressing inflammation and apoptosis, indicating that SNHG9 may be a potential therapeutic target for obese patients with endothelial dysfunction.


Assuntos
Doenças Cardiovasculares/patologia , Exossomos/metabolismo , Obesidade/complicações , RNA Longo não Codificante/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/genética , Adipócitos/citologia , Tecido Adiposo/citologia , Adolescente , Apoptose/genética , Apoptose/imunologia , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/imunologia , Linhagem Celular , Criança , Biologia Computacional , Regulação para Baixo , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais , Obesidade/sangue , Obesidade/imunologia , Obesidade/patologia , RNA Longo não Codificante/sangue , RNA Longo não Codificante/isolamento & purificação , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo
10.
Front Oncol ; 10: 616173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33575219

RESUMO

TBX1 belongs to an evolutionarily conserved family of transcription factors involved in organ development. TBX1 has been reported to have a hypermethylated cytosine guanine dinucleotide island around its second exon, which was related to prostate cancer (PCa) progression. However, the role and exact mechanism of TBX1 in PCa remains unknown. Using human prostate samples, online data mining and multiple in vitro and in vivo models, we examined the biological role and underlying mechanisms of TBX1 in PCa. TBX1 was highly expressed in PCa tissues, and high TBX1 expression was positively associated with Gleason score, pathological tumor stage, pathological lymph node stage, extraprostatic extension and disease/progression-free survival. In vitro and in vivo data demonstrated that TBX1 silencing inhibits PCa cell proliferation and colony formation and increases the cell population at the G0/G1 phase. The exogenous expression of TBX1 rescued these phenotypes. Mechanistically, TBX1 silencing suppressed the expression of 45S ribosomal RNA (rRNA), which was rescued by the exogenous expression of TBX1. TBX1 silencing inhibited the monomethylation of histone 3 lysine 4 (H3K4me1) binding with the non-coding intergenic spacer (IGS) regions of ribosomal DNA (rDNA) and the recruitment of upstream binding factor to the promoter and IGS regions of rDNA. The drug-induced enhancement of H3K4me1 counteracted the effect of TBX1 silencing. These findings indicate that TBX1 exerts its tumor activator function in PCa cells via epigenetic control, thereby promoting rRNA gene transcription. Thus, TBX1 may represent a prognostic biomarker and therapeutic target for PCa patients.

11.
Front Physiol ; 10: 595, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178748

RESUMO

The pentatricopeptide repeat (PPR) family plays a major role in RNA stability, regulation, processing, splicing, translation, and editing. Leucine-rich PPR-motif-containing protein (LRPPRC), a member of the PPR family, is a known gene mutation that causes Leigh syndrome French-Canadian. Recently, growing evidence has pointed out that LRPPRC dysregulation is related to various diseases ranging from tumors to viral infections. This review presents available published data on the LRPPRC protein function and its role in tumors and other diseases. As a multi-functional protein, LRPPRC regulates a myriad of biological processes, including energy metabolism and maturation and the export of nuclear mRNA. Overexpression of LRPPRC has been observed in various human tumors and is associated with poor prognosis. Downregulation of LRPPRC inhibits growth and invasion, induces apoptosis, and overcomes drug resistance in tumor cells. In addition, LRPPRC plays a potential role in Parkinson's disease, neurofibromatosis 1, viral infections, and venous thromboembolism. Further investigating these new functions of LRPPRC should provide novel opportunities for a better understanding of its pathological role in diseases from tumors to viral infections and as a potential biomarker and molecular target for disease treatment.

12.
Biotechnol Biofuels ; 6(1): 106, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23883549

RESUMO

BACKGROUND: Photosynthetic cyanobacteria have been recently proposed as a 'microbial factory' to produce butanol due to their capability to utilize solar energy and CO2 as the sole energy and carbon sources, respectively. However, to improve the productivity, one key issue needed to be addressed is the low tolerance of the photosynthetic hosts to butanol. RESULTS: In this study, we first applied a quantitative transcriptomics approach with a next-generation RNA sequencing technology to identify gene targets relevant to butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803. The results showed that 278 genes were induced by the butanol exposure at all three sampling points through the growth time course. Genes encoding heat-shock proteins, oxidative stress related proteins, transporters and proteins involved in common stress responses, were induced by butanol exposure. We then applied GC-MS based metabolomics analysis to determine the metabolic changes associated with the butanol exposure. The results showed that 46 out of 73 chemically classified metabolites were differentially regulated by butanol treatment. Notably, 3-phosphoglycerate, glycine, serine and urea related to general stress responses were elevated in butanol-treated cells. To validate the potential targets, we constructed gene knockout mutants for three selected gene targets. The comparative phenotypic analysis confirmed that these genes were involved in the butanol tolerance. CONCLUSION: The integrated OMICS analysis provided a comprehensive view of the complicated molecular mechanisms employed by Synechocystis sp. PCC 6803 against butanol stress, and allowed identification of a series of potential gene candidates for tolerance engineering in cyanobacterium Synechocystis sp. PCC 6803.

13.
Biotechnol Biofuels ; 5(1): 89, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23259593

RESUMO

BACKGROUND: Fermentation production of biofuel ethanol consumes agricultural crops, which will compete directly with the food supply. As an alternative, photosynthetic cyanobacteria have been proposed as microbial factories to produce ethanol directly from solar energy and CO2. However, the ethanol productivity from photoautotrophic cyanobacteria is still very low, mostly due to the low tolerance of cyanobacterial systems to ethanol stress. RESULTS: To build a foundation necessary to engineer robust ethanol-producing cyanobacterial hosts, in this study we applied a quantitative transcriptomics approach with a next-generation sequencing technology, combined with quantitative reverse-transcript PCR (RT-PCR) analysis, to reveal the global metabolic responses to ethanol in model cyanobacterial Synechocystis sp. PCC 6803. The results showed that ethanol exposure induced genes involved in common stress responses, transporting and cell envelope modification. In addition, the cells can also utilize enhanced polyhydroxyalkanoates (PHA) accumulation and glyoxalase detoxication pathway as means against ethanol stress. The up-regulation of photosynthesis by ethanol was also further confirmed at transcriptional level. Finally, we used gene knockout strains to validate the potential target genes related to ethanol tolerance. CONCLUSION: RNA-Seq based global transcriptomic analysis provided a comprehensive view of cellular response to ethanol exposure. The analysis provided a list of gene targets for engineering ethanol tolerance in cyanobacterium Synechocystis.

14.
J Proteome Res ; 11(11): 5286-300, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23062023

RESUMO

Recent progress in metabolic engineering has led to autotrophic production of ethanol in various cyanobacterial hosts. However, cyanobacteria are known to be sensitive to ethanol, which restricts further efforts to increase ethanol production levels in these renewable host systems. To understand the mechanisms of ethanol tolerance so that engineering more robust cyanobacterial hosts can be possible, in this study, the responses of model cyanobacterial Synechocystis sp. PCC 6803 to ethanol were determined using a quantitative proteomics approach with iTRAQ LC-MS/MS technologies. The resulting high-quality proteomic data set consisted of 24,887 unique peptides corresponding to 1509 identified proteins, a coverage of approximately 42% of the predicted proteins in the Synechocystis genome. Using a cutoff of 1.5-fold change and a p-value less than 0.05, 135 and 293 unique proteins with differential abundance levels were identified between control and ethanol-treated samples at 24 and 48 h, respectively. Functional analysis showed that the Synechocystis cells employed a combination of induced common stress response, modifications of cell membrane and envelope, and induction of multiple transporters and cell mobility-related proteins as protection mechanisms against ethanol toxicity. Interestingly, our proteomic analysis revealed that proteins related to multiple aspects of photosynthesis were up-regulated in the ethanol-treated Synechocystis cells, consistent with increased chlorophyll a concentration in the cells upon ethanol exposure. The study provided the first comprehensive view of the complicated molecular mechanisms against ethanol stress and also provided a list of potential gene targets for further engineering ethanol tolerance in Synechocystis PCC 6803.


Assuntos
Biocombustíveis , Cromatografia Líquida/métodos , Cianobactérias/metabolismo , Etanol/metabolismo , Proteômica , Synechocystis/metabolismo , Espectrometria de Massas em Tandem/métodos , Clorofila/metabolismo , Clorofila A , Citometria de Fluxo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA