Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 514(4): 1108-1114, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31101340

RESUMO

L-amino acids represent the most common amino acid form, most notably as protein residues, whereas D-amino acids, despite their rare occurrence, play significant roles in many biological processes. Amino acid racemases are enzymes that catalyze the interconversion of L- and/or D-amino acids. McyF is a pyridoxal 5'-phosphate (PLP) independent amino acid racemase that produces the substrate D-aspartate for the biosynthesis of microcystin in the cyanobacterium Microcystis aeruginosa PCC7806. Here we report the crystal structures of McyF in complex with citrate, L-Asp and D-Asp at 2.35, 2.63 and 2.80 Å, respectively. Structural analyses indicate that McyF and homologs possess highly conserved residues involved in substrate binding and catalysis. In addition, residues Cys87 and Cys195 were clearly assigned to the key catalytic residues of "two bases" that deprotonate D-Asp and L-Asp in a reaction independent of PLP. Further site-directed mutagenesis combined with enzymatic assays revealed that Glu197 also participates in the catalytic reaction. In addition, activity assays proved that McyF could also catalyze the interconversion of L-MeAsp between D-MeAsp, the precursor of another microcystin isoform. These findings provide structural insights into the catalytic mechanism of aspartate racemase and microcystin biosynthesis.


Assuntos
Isomerases de Aminoácido/metabolismo , Microcystis/enzimologia , Biocatálise , Cristalografia por Raios X , Modelos Moleculares , Especificidade por Substrato
2.
Sci Rep ; 5: 16470, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26576507

RESUMO

The one-dimensional pattern of heterocyst in the model cyanobacterium Anabaena sp. PCC 7120 is coordinated by the transcription factor HetR and PatS peptide. Here we report the complex structures of HetR binding to DNA, and its hood domain (HetRHood) binding to a PatS-derived hexapeptide (PatS6) at 2.80 and 2.10 Å, respectively. The intertwined HetR dimer possesses a couple of novel HTH motifs, each of which consists of two canonical α-helices in the DNA-binding domain and an auxiliary α-helix from the flap domain of the neighboring subunit. Two PatS6 peptides bind to the lateral clefts of HetRHood, and trigger significant conformational changes of the flap domain, resulting in dissociation of the auxiliary α-helix and eventually release of HetR from the DNA major grove. These findings provide the structural insights into a prokaryotic example of Turing model.


Assuntos
Proteínas de Bactérias/química , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Modelos Moleculares , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
3.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 873-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849398

RESUMO

Microcystins, which are the most common cause of hepatotoxicity associated with cyanobacterial water blooms, are assembled in vivo on a large multienzyme complex via a mixed nonribosomal peptide synthetase/polyketide synthetase (NRPS/PKS). The biosynthesis of microcystin in Microcystis aeruginosa PCC 7806 starts with the enzyme McyG, which contains an adenylation-peptidyl carrier protein (A-PCP) didomain for loading the starter unit to assemble the side chain of an Adda residue. However, the catalytic mechanism remains unclear. Here, the 2.45 Šresolution crystal structure of the McyG A-PCP didomain complexed with the catalytic intermediate L-phenylalanyl-adenylate (L-Phe-AMP) is reported. Each asymmetric unit contains two protein molecules, one of which consists of the A-PCP didomain and the other of which comprises only the A domain. Structural analyses suggest that Val227 is likely to be critical for the selection of hydrophobic substrates. Moreover, two distinct interfaces demonstrating variable crosstalk between the PCP domain and the A domain were observed. A catalytic cycle for the adenylation and peptide transfer of the A-PCP didomain is proposed.


Assuntos
Ligases/química , Microcistinas/metabolismo , Microcystis/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Ligases/metabolismo , Microcystis/química , Microcystis/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 3013-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25372690

RESUMO

Gas vesicles are gas-filled proteinaceous organelles that provide buoyancy for bacteria and archaea. A gene cluster that is highly conserved in various species encodes about 8-14 proteins (Gvp proteins) that are involved in the formation of gas vesicles. Here, the first crystal structure of the gas vesicle protein GvpF from Microcystis aeruginosa PCC 7806 is reported at 2.7 Šresolution. GvpF is composed of two structurally distinct domains (the N-domain and C-domain), both of which display an α+ß class overall structure. The N-domain adopts a novel fold, whereas the C-domain has a modified ferredoxin fold with an apparent variation owing to an extension region consisting of three sequential helices. The two domains pack against each other via interactions with a C-terminal tail that is conserved among cyanobacteria. Taken together, it is concluded that the overall architecture of GvpF presents a novel fold. Moreover, it is shown that GvpF is most likely to be a structural protein that is localized at the gas-facing surface of the gas vesicle by immunoblotting and immunogold labelling-based tomography.


Assuntos
Proteínas de Bactérias/química , Microcystis/química , Proteínas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Microcystis/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas/ultraestrutura , Alinhamento de Sequência
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 8): 2085-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25084328

RESUMO

Saccharomyces cerevisiae Coq5 is an S-adenosyl methionine (SAM)-dependent methyltransferase (SAM-MTase) that catalyzes the only C-methylation step in the coenzyme Q (CoQ) biosynthesis pathway, in which 2-methoxy-6-polyprenyl-1,4-benzoquinone (DDMQH2) is converted to 2-methoxy-5-methyl-6-polyprenyl-1,4-benzoquinone (DMQH2). Crystal structures of Coq5 were determined in the apo form (Coq5-apo) at 2.2 Šresolution and in the SAM-bound form (Coq5-SAM) at 2.4 Šresolution, representing the first pair of structures for the yeast CoQ biosynthetic enzymes. Coq5 displays a typical class I SAM-MTase structure with two minor variations beyond the core domain, both of which are considered to participate in dimerization and/or substrate recognition. Slight conformational changes at the active-site pocket were observed upon binding of SAM. Structure-based computational simulation using an analogue of DDMQH2 enabled us to identify the binding pocket and entrance tunnel of the substrate. Multiple-sequence alignment showed that the residues contributing to the dimeric interface and the SAM- and DDMQH2-binding sites are highly conserved in Coq5 and homologues from diverse species. A putative catalytic mechanism of Coq5 was proposed in which Arg201 acts as a general base to initiate catalysis with the help of a water molecule.


Assuntos
Cristalografia por Raios X/métodos , Metiltransferases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Ubiquinona/biossíntese , Catálise , Metiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ubiquinona/metabolismo
6.
J Biol Chem ; 289(30): 20898-907, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24936067

RESUMO

Protein glycosylation catalyzed by the O-GlcNAc transferase (OGT) plays a critical role in various biological processes. In Streptococcus pneumoniae, the core enzyme GtfA and co-activator GtfB form an OGT complex to glycosylate the serine-rich repeat (SRR) of adhesin PsrP (pneumococcal serine-rich repeat protein), which is involved in the infection and pathogenesis. Here we report the 2.0 Å crystal structure of GtfA, revealing a ß-meander add-on domain beyond the catalytic domain. It represents a novel add-on domain, which is distinct from the all-α-tetratricopeptide repeats in the only two structure-known OGTs. Structural analyses combined with binding assays indicate that this add-on domain contributes to forming an active GtfA-GtfB complex and recognizing the acceptor protein. In addition, the in vitro glycosylation system enables us to map the O-linkages to the serine residues within the first SRR of PsrP. These findings suggest that fusion with an add-on domain might be a universal mechanism for diverse OGTs that recognize varying acceptor proteins/peptides.


Assuntos
Streptococcus pneumoniae/enzimologia , Transaminases/química , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Cristalografia por Raios X , Glicosilação , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Streptococcus pneumoniae/genética , Transaminases/genética , Transaminases/metabolismo
7.
PLoS Pathog ; 10(6): e1004169, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24901708

RESUMO

Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a ß-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus.


Assuntos
Adesinas Bacterianas/química , Aderência Bacteriana , Interações Hospedeiro-Patógeno , Modelos Moleculares , Mucosa Respiratória/microbiologia , Staphylococcus aureus/fisiologia , Fatores de Virulência/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Sítios de Ligação , Linhagem Celular , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mucosa Respiratória/metabolismo , Staphylococcus aureus/patogenicidade , Trissacarídeos/química , Trissacarídeos/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
J Biol Chem ; 288(32): 22985-92, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23818518

RESUMO

Saccharomyces cerevisiae Abz2 is a pyridoxal 5'-phosphate (PLP)-dependent lyase that converts 4-amino-4-deoxychorismate (ADC) to para-aminobenzoate and pyruvate. To investigate the catalytic mechanism, we determined the 1.9 Å resolution crystal structure of Abz2 complexed with PLP, representing the first eukaryotic ADC lyase structure. Unlike Escherichia coli ADC lyase, whose dimerization is critical to the formation of the active site, the overall structure of Abz2 displays as a monomer of two domains. At the interdomain cleft, a molecule of cofactor PLP forms a Schiff base with residue Lys-251. Computational simulations defined a basic clamp to orientate the substrate ADC in a proper pose, which was validated by site-directed mutageneses combined with enzymatic activity assays. Altogether, we propose a putative catalytic mechanism of a unique class of monomeric ADC lyases led by yeast Abz2.


Assuntos
Simulação de Dinâmica Molecular , Oxo-Ácido-Liases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Cristalografia por Raios X , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Oxo-Ácido-Liases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
9.
J Biol Chem ; 288(21): 14949-58, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23580646

RESUMO

The 6-phospho-ß-glucosidase BglA-2 (EC 3.2.1.86) from glycoside hydrolase family 1 (GH-1) catalyzes the hydrolysis of ß-1,4-linked cellobiose 6-phosphate (cellobiose-6'P) to yield glucose and glucose 6-phosphate. Both reaction products are further metabolized by the energy-generating glycolytic pathway. Here, we present the first crystal structures of the apo and complex forms of BglA-2 with thiocellobiose-6'P (a non-metabolizable analog of cellobiose-6'P) at 2.0 and 2.4 Å resolution, respectively. Similar to other GH-1 enzymes, the overall structure of BglA-2 from Streptococcus pneumoniae adopts a typical (ß/α)8 TIM-barrel, with the active site located at the center of the convex surface of the ß-barrel. Structural analyses, in combination with enzymatic data obtained from site-directed mutant proteins, suggest that three aromatic residues, Tyr(126), Tyr(303), and Trp(338), at subsite +1 of BglA-2 determine substrate specificity with respect to 1,4-linked 6-phospho-ß-glucosides. Moreover, three additional residues, Ser(424), Lys(430), and Tyr(432) of BglA-2, were found to play important roles in the hydrolytic selectivity toward phosphorylated rather than non-phosphorylated compounds. Comparative structural analysis suggests that a tryptophan versus a methionine/alanine residue at subsite -1 may contribute to the catalytic and substrate selectivity with respect to structurally similar 6-phospho-ß-galactosidases and 6-phospho-ß-glucosidases assigned to the GH-1 family.


Assuntos
Proteínas de Bactérias/química , Glucosidases/química , Streptococcus pneumoniae/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glucosidases/genética , Glucosidases/metabolismo , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Streptococcus pneumoniae/genética , Relação Estrutura-Atividade , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA