Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.403
Filtrar
1.
J Hazard Mater ; 473: 134639, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772113

RESUMO

In this study, cobalt molybdate (CoMoO4) activated peracetic acid (PAA) was developed for water purification. CoMoO4/PAA system could remove 95% SMX with pseudo-first-order reaction rate constant of 0.15410 min-1, which was much higher than CoFe2O4/PAA, FeMoO4/PAA, and CoMoO4/persulfate systems. CoMoO4/PAA system follows a non-radical species pathway dominated by the high-valent cobalt (Co(IV)), and CH3C(O)OO• shows a minor contribution to decontamination. Density functional theory (DFT) calculation indicates that the generation of Co(IV) is thermodynamically more favorable than CH3C(O)OO• generation. The abundant Co(IV) generation was attributed to the special structure of CoMoO4 and effect of molybdenum on redox cycle of Co(II)/Co(III). DFT calculation showed that the atoms of SMX with higher ƒ0 and ƒ- values are the main attack sites, which are in accordance with the results of degradation byproducts. CoMoO4/PAA system can effectively reduce biological toxicity after the reaction. Benefiting from the selective of Co(IV) and CH3C(O)OO•, the established CoMoO4/PAA system exhibits excellent anti-interference capacity and satisfactory decontamination performance under actual water conditions. Furthermore, the system was capable of good potential practical application for efficient removal of various organics and favorable reuse. Overall, this study provides a new strategy by CoMoO4 activated PAA for decontamination with high efficiency, high selectivity and favorable anti-interference.

2.
Transl Psychiatry ; 14(1): 202, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734669

RESUMO

The pathogenesis of major depressive disorder (MDD) involves lipid metabolism. Our earlier research also revealed that MDD patients had much lower total cholesterol (TC) concentrations than healthy controls (HCs). However, it is still unclear why TC decreased in MDD. Here, based on the Ingenuity Knowledge Base's ingenuity pathway analysis, we found that sodium voltage-gated channel alpha subunit 11A (SCN11A) might serve as a link between low lipid levels and MDD. We analyzed the TC levels and used ELISA kits to measure the levels of SCN11A in the serum from 139 MDD patients, and 65 HCs to confirm this theory and explore the potential involvement of SCN11A in MDD. The findings revealed that TC levels were considerably lower and SCN11A levels were remarkably increased in MDD patients than those in HCs, while they were significantly reversed in drug-treatment MDD patients than in drug-naïve MDD patients. There was no significant difference in SCN11A levels among MDD patients who used single or multiple antidepressants, and selective serotonin reuptake inhibitors or other antidepressants. Pearson correlation analysis showed that the levels of TC and SCN11A were linked with the Hamilton Depression Rating Scales score. A substantial association was also found between TC and SCN11A. Moreover, a discriminative model made up of SCN11A was discovered, which produced an area under a curve of 0.9571 in the training set and 0.9357 in the testing set. Taken together, our findings indicated that SCN11A may serve as a link between low lipid levels and MDD, and showed promise as a candidate biomarker for MDD.


Assuntos
Colesterol , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/sangue , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Colesterol/sangue , Estudos de Casos e Controles , Antidepressivos/uso terapêutico
3.
Transl Cancer Res ; 13(4): 2064-2072, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737686

RESUMO

Background: Tracheobronchopathia osteochondroplastica (TPO) is a rare, benign, chronic disorder of unknown etiology. It is characterized by submucosal nodules, often calcified, which predominantly affect the anterolateral aspects of the trachea and main bronchi, while sparing the posterior bronchial wall. The co-occurrence of TPO and lung cancer is exceedingly rare. This report presents a case of TPO association with early-stage lung cancer, which was managed through surgical intervention. No active treatment was undertaken for the TPO. Case Description: A patient presented with a nodule in the right upper lobe, which was identified during a computed tomography (CT) scan of the chest, suggestive of early-stage lung cancer. Concurrently, multiple calcifications in the cartilaginous rings of the trachea were noted. Bronchoscopy revealed distinctive "pebblestone" nodules along the anterior and lateral tracheal walls, indicative of extensive TPO. The patient underwent bronchofiberscopy, which showed patency in the bronchial lumen of the right lung's upper lobe. A biopsy was not undertaken during this procedure. Comprehensive preoperative tests, including a blood biochemical examination, tumor-marker tests, lung-function tests, head-enhanced magnetic resonance imaging, abdominal ultrasound, and whole-body bone emission CT revealed no significant abnormalities. Despite this, the patient declined a whole-body positron emission tomography (PET)-CT scan. Given the potential malignancy of nodules in the right lung's upper lobe, the lobectomy for lung cancer was carried out, a procedure that would have proceeded irrespective of the presence or absence of TPO. Preoperative planning for potential tracheal intubation difficulties involved consultation with the anesthesiologist, resulting in a smooth intraoperative process. The pathology confirmed invasive adenocarcinoma. Post-surgery, the patient developed an infection in the right lung's lower lobe, identified as pseudomonas aeruginosa and Klebsiella pneumoniae through sputum culture and bronchoscopic lavage. Treatment with meropenem for 2 weeks, as guided by drug sensitivity results and respiratory advice, led to an improvement, allowing for discharge. A follow-up lung CT four months post-operation showed inflammation absorption in the right lower lobe. Conclusions: Surgical resection in cases of TPO association with lung cancer may have an increased risk of postoperative pulmonary infection. Proactive intraoperative sputum aspiration by anesthesiologists and the postoperative reinforcement of anti-infection measures, guided by drug sensitivity results, are recommended.

4.
Nat Food ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724686

RESUMO

Salmonella enterica causes severe food-borne infections through contamination of the food supply chain. Its evolution has been associated with human activities, especially animal husbandry. Advances in intensive farming and global transportation have substantially reshaped the pig industry, but their impact on the evolution of associated zoonotic pathogens such as S. enterica remains unresolved. Here we investigated the population fluctuation, accumulation of antimicrobial resistance genes and international serovar Choleraesuis transmission of nine pig-enriched S. enterica populations comprising more than 9,000 genomes. Most changes were found to be attributable to the developments of the modern pig industry. All pig-enriched salmonellae experienced host transfers in pigs and/or population expansions over the past century, with pigs and pork having become the main sources of S. enterica transmissions to other hosts. Overall, our analysis revealed strong associations between the transmission of pig-enriched salmonellae and the global pork trade.

5.
Heliyon ; 10(9): e30735, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742067

RESUMO

Uniportal video-assisted thoracoscopic surgery (UVATS) segmentectomy has emerged as an effective approach for managing early-stage non-small-cell lung cancer (NSCLC). Compared to conventional open and thoracoscopic surgeries, this minimally invasive surgical technique offers multiple benefits, including reduced postoperative discomfort, shorter hospital stays, expedited recovery, fewer complications, and superior cosmetic outcomes. Particularly advantageous in preserving lung function, UVATS segmentectomy is a compelling option for patients with compromised lung capabilities or limited pulmonary reserve. Notably, it demonstrates promising oncological results in early-stage NSCLC, with long-term survival rates comparable to those of lobectomies. Skilled thoracic surgeons can ensure a safe and effective execution of UVATS despite the potential technical challenges posed by complex tumor locations that may hinder visibility and maneuverability within the thoracic cavity. This study provided a comprehensive review of the literature and existing studies on UVATS segmentectomies. It delves into the evolution of the technique, its current applications, and the balance between its benefits and limitations. This discussion extends the technical considerations, challenges, and prospects of UVATS segmentectomy. Furthermore, it aimed to update advancements in segmentectomy for treating early-stage NSCLC, offering in-depth insights to thoracic surgeons to inform more scientifically grounded and patient-specific surgical decisions.

6.
Front Med (Lausanne) ; 11: 1302057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745738

RESUMO

Background: Previous studies have indicated beneficial outcomes of transcutaneous electrical acupoint stimulation (TEAS), but high-quality and comprehensive meta-analyses are lacking. The aim was to quantitatively analyze the efficacy and safety of perioperative TEAS on postoperative pain and recovery. Methods: PubMed, Web of Science, EMBASE, and the Cochrane Library were searched through July 2022. Randomized controlled trials (RCTs) that examined the perioperative application of TEAS in adults compared with sham-TEAS and/or non-TEAS were eligible. Cumulative analgesic consumption within 24 h and rest pain scores at 2, 6, 12, and 24 h postoperatively were the two co-primary outcomes. Results: Seventy-six RCTs (n = 9,665 patients) were included. Patients treated with TEAS experienced a reduction in clinical importance in cumulative analgesic (morphine equivalent) consumption (WMD: -14.60 mg, 97.5% CI: -23.60 to -5.60; p < 0.001) and a reduction in statistical importance in rest pain scores at multiple time points within the first 24 postoperative hours. The secondary outcome analysis also identified clinically significant recovery benefits to TEAS during the first 24 h after surgery. Furthermore, TEAS could effectively reduce opioid-related side effects and did not increase serious side effects. Conclusion: This article describes current evidence about TEAS intervention on early postoperative pain and recovery. The results support the effectiveness of TEAS, but more high-quality evidence of clinical applicability is also needed. Systematic review registration: PROSPERO (CRD42021249814).

7.
Eur J Pharmacol ; 975: 176632, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718959

RESUMO

Myocardial fibrosis (MF) is a pivotal pathological process implicated in various cardiovascular diseases, particularly heart failure. Astragaloside IV (AS-IV), a natural compound derived from Astragalus membranaceus, possesses potent cardioprotective properties. However, the precise molecular mechanisms underlying its anti-MF effects, particularly in relation to senescence, remain elusive. Thus, this study aimed to investigate the therapeutic potential and underlying molecular mechanisms of AS-IV in treating ISO-induced MF in mice, employing transcriptomics, proteomics, in vitro, and in vivo experiments. We assessed the positive effects of AS-IV on ISO-induced MF using HE staining, Masson staining, ELISA, immunohistochemical staining, transthoracic echocardiography, transmission electron microscopy, and DHE fluorescence staining. Additionally, we elucidated the regulatory role of AS-IV in MF through comprehensive transcriptomics and proteomics analyses, complemented by Western blotting and RT-qPCR validation of pertinent molecular pathways. Our findings demonstrated that AS-IV treatment markedly attenuated ISO-induced myocardial injury and oxidative stress, concomitantly inhibiting the release of SASPs. Furthermore, integrated transcriptomics and proteomics analyses revealed that the anti-MF mechanism of AS-IV was associated with regulating cellular senescence and the p53 signaling pathway. These results highlight AS-IV exerts its anti-MF effects not only by inhibiting oxidative stress but also by modulating senescence through the p53 signaling pathway.

8.
Dev Cell ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38776924

RESUMO

A significant variation in chromatin accessibility is an epigenetic feature of leukemia. The cause of this variation in leukemia, however, remains elusive. Here, we identify SMARCA5, a core ATPase of the imitation switch (ISWI) chromatin remodeling complex, as being responsible for aberrant chromatin accessibility in leukemia cells. We find that SMARCA5 is required to maintain aberrant chromatin accessibility for leukemogenesis and then promotes transcriptional activation of AKR1B1, an aldo/keto reductase, by recruiting transcription co-activator DDX5 and transcription factor SP1. Higher levels of AKR1B1 are associated with a poor prognosis in leukemia patients and promote leukemogenesis by reprogramming fructose metabolism. Moreover, pharmacological inhibition of AKR1B1 has been shown to have significant therapeutic effects in leukemia mice and leukemia patient cells. Thus, our findings link the aberrant chromatin state mediated by SMARCA5 to AKR1B1-mediated endogenous fructose metabolism reprogramming and shed light on the essential role of AKR1B1 in leukemogenesis, which may provide therapeutic strategies for leukemia.

9.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732019

RESUMO

Thrombosis is the pathological clot formation under abnormal hemodynamic conditions, which can result in vascular obstruction, causing ischemic strokes and myocardial infarction. Thrombus growth under moderate to low shear (<1000 s-1) relies on platelet activation and coagulation. Thrombosis at elevated high shear rates (>10,000 s-1) is predominantly driven by unactivated platelet binding and aggregating mediated by von Willebrand factor (VWF), while platelet activation and coagulation are secondary in supporting and reinforcing the thrombus. Given the molecular and cellular level information it can access, multiscale computational modeling informed by biology can provide new pathophysiological mechanisms that are otherwise not accessible experimentally, holding promise for novel first-principle-based therapeutics. In this review, we summarize the key aspects of platelet biorheology and mechanobiology, focusing on the molecular and cellular scale events and how they build up to thrombosis through platelet adhesion and aggregation in the presence or absence of platelet activation. In particular, we highlight recent advancements in multiscale modeling of platelet biorheology and mechanobiology and how they can lead to the better prediction and quantification of thrombus formation, exemplifying the exciting paradigm of digital medicine.


Assuntos
Plaquetas , Hemostasia , Trombose , Humanos , Trombose/metabolismo , Plaquetas/metabolismo , Hemostasia/fisiologia , Ativação Plaquetária , Animais , Adesividade Plaquetária , Agregação Plaquetária
10.
ACS Appl Mater Interfaces ; 16(20): 26537-26546, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739859

RESUMO

Water-stable organic radicals are promising photothermal conversion candidates for photothermal therapy (PTT). However, organic radicals are usually unstable in biological environments, which greatly hinders their wide application. Here, we have developed a chaotropic effect-based and photoinduced water-stable supramolecular radical (MB12-2) for efficient antibacterial PTT. The supramolecular radical precursor MB12-1 was constructed by the chaotropic effect between closo-dodecaborate cluster (B12H122-) and N,N'-dimethylated dipyridinium thiazolo [5,4-d] thiazole (MPT2+). Subsequently, with triethanolamine (TEOA) serving as an electron donor, MB12-1 could transform to its radical form MB12-2 through photoinduced electron transfer (PET) under 435-nm laser irradiation. The N2 adsorption-desorption analysis confirmed that MB12-2 was tightly packed through the introduction of B12H122-, which effectively enhanced its stability via a spatial site-blocked effect. Moreover, the half-life of MB12-2 in water was calculated through ultraviolet-visible light (UV-vis) absorption spectra results for periods as long as 20 days. In addition, in the skin infection model, MB12-2, as a wound dressing, showed remarkable photothermal antibacterial activity (>97%) under 660-nm laser irradiation and promoted wound healing. This study presents a simple method for designing long-term water-stable supramolecular radicals, offering a novel avenue for noncontact treatments for bacterial infections.


Assuntos
Antibacterianos , Terapia Fototérmica , Antibacterianos/química , Antibacterianos/farmacologia , Animais , Água/química , Camundongos , Radicais Livres/química , Boro/química , Boro/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
11.
Nat Commun ; 15(1): 4330, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773072

RESUMO

The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop ß1S2-ß1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Infecções por Henipavirus , Proteínas Virais de Fusão , Animais , Anticorpos Neutralizantes/imunologia , Feminino , Anticorpos Antivirais/imunologia , Infecções por Henipavirus/virologia , Infecções por Henipavirus/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/química , Humanos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Vírus Nipah/imunologia , Internalização do Vírus/efeitos dos fármacos , Henipavirus/imunologia , Cricetinae , Reações Cruzadas/imunologia , Vírus Hendra/imunologia , Macaca , Mesocricetus , Cristalografia por Raios X
12.
Proc Natl Acad Sci U S A ; 121(22): e2314166121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768348

RESUMO

The nonstructural protein 1 (Nsp1) of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is a virulence factor that targets multiple cellular pathways to inhibit host gene expression and antiviral response. However, the underlying mechanisms of the various Nsp1-mediated functions and their contributions to SARS-CoV-2 virulence remain unclear. Among the targets of Nsp1 is the mRNA (messenger ribonucleic acid) export receptor NXF1-NXT1, which mediates nuclear export of mRNAs from the nucleus to the cytoplasm. Based on Nsp1 crystal structure, we generated mutants on Nsp1 surfaces and identified an acidic N-terminal patch that is critical for interaction with NXF1-NXT1. Photoactivatable Nsp1 probe reveals the RNA Recognition Motif (RRM) domain of NXF1 as an Nsp1 N-terminal binding site. By mutating the Nsp1 N-terminal acidic patch, we identified a separation-of-function mutant of Nsp1 that retains its translation inhibitory function but substantially loses its interaction with NXF1 and reverts Nsp1-mediated mRNA export inhibition. We then generated a recombinant (r)SARS-CoV-2 mutant on the Nsp1 N-terminal acidic patch and found that this surface is key to promote NXF1 binding and inhibition of host mRNA nuclear export, viral replication, and pathogenicity in vivo. Thus, these findings provide a mechanistic understanding of Nsp1-mediated mRNA export inhibition and establish the importance of this pathway in the virulence of SARS-CoV-2.


Assuntos
Transporte Ativo do Núcleo Celular , COVID-19 , Proteínas de Transporte Nucleocitoplasmático , RNA Mensageiro , Proteínas de Ligação a RNA , SARS-CoV-2 , Proteínas não Estruturais Virais , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Animais , COVID-19/virologia , COVID-19/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Replicação Viral , Núcleo Celular/metabolismo , Células Vero , Virulência , Chlorocebus aethiops , Células HEK293
13.
J Biophotonics ; 17(5): e202400023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38576140

RESUMO

Light exposure has been proven to have a significant impact on human health. As a result, researchers are increasingly exploring its potential benefits and drawbacks. With advancements in understanding light and the manufacturing of light sources, modern health lighting has become widely utilized in daily life and plays a critical role in the prevention and treatment of various illnesses. The use of light in healthcare is a global trend, with many countries actively promoting the development and application of relevant scientific research and medical technology. This field has gained worldwide attention and support from scientists and doctors alike. In this review, we examine the application of lighting in human health and recent breakthroughs in light exposure related to pathology, therapeutic strategies, molecular changes, and more. Finally, we also discuss potential future developments and areas of application.


Assuntos
Luz , Humanos , Saúde , Fototerapia , Iluminação
14.
Adv Sci (Weinh) ; : e2400642, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647258

RESUMO

Kidney stones are a pervasive disease with notoriously high recurrence rates that require more effective treatment strategies. Herein, tartronic acid is introduced as an efficient inhibitor of calcium oxalate monohydrate (COM) crystallization, which is the most prevalent constituent of human kidney stones. A combination of in situ experimental techniques and simulations are employed to compare the inhibitory effects of tartronic acid with those of its molecular analogs. Tartronic acid exhibits an affinity for binding to rapidly growing apical surfaces of COM crystals, thus setting it apart from other inhibitors such as citric acid, the current preventative treatment for kidney stones. Bulk crystallization and in situ atomic force microscopy (AFM) measurements confirm the mechanism by which tartronic acid interacts with COM crystal surfaces and inhibits growth. These findings are consistent with in vivo studies that reveal the efficacy of tartronic acid is similar to that of citric acid in mouse models of hyperoxaluria regarding their inhibitory effect on stone formation and alleviating stone-related physical harm. In summary, these findings highlight the potential of tartronic acid as a promising alternative to citric acid for the management of calcium oxalate nephropathies, offering a new option for clinical intervention in cases of kidney stones.

15.
Health Psychol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602829

RESUMO

PURPOSE: This study aimed to examine the double-edged effect of social mobility belief on socioeconomically disadvantaged adolescents' mental and physical health and further explore whether intentional self-regulation is the common psychological mechanism of social mobility belief affecting physical and mental health. METHOD: A total of 469 adolescents (Mage = 13.96 years, 49.3% boys) from two rural public schools in China were included in this study. Adolescents completed questionnaires measuring social mobility belief and mental health (life satisfaction, self-esteem, and depression). Physical health (allostatic load) was reflected by six indicators (resting diastolic and systolic blood pressure, body mass index, epinephrine, norepinephrine, and cortisol). RESULTS: Social mobility belief was positively correlated with adolescents' life satisfaction and self-esteem but negatively correlated with depression. Intentional self-regulation mediated the relationships between social mobility belief and mental health. In addition, the results showed that intentional self-regulation mediated the relationship between social mobility belief and adolescents' physical health. CONCLUSIONS: Social mobility belief may be a "skin-deep" resilience resource positively related to mental health but negatively correlated with physical health through intentional self-regulation among socioeconomically disadvantaged adolescents. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

16.
Rapid Commun Mass Spectrom ; 38(11): e9742, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38587140

RESUMO

RATIONALE: Atmospheric pressure interface multi-reflection time-of-flight mass spectrometry (API-MRTOF-MS) has the potential to be a rapid and high-resolution analytical tool for versatile applications in chemistry, biology, environmental science, and medicine. METHODS: The ions were reflected in a mass analyzer via electrostatic mirrors and folded flight path. Therefore, flight distances were significantly increased. The ion flight path of the API-MRTOF-MS was extended from meters to over 1 km, and the mass resolution was increased. Furthermore, the mass analysis could be completed at around 10 ms due to the rapid response of TOF-MS. RESULTS: A high-resolution API-MRTOF-MS approach is successfully developed in this study. The mass resolution could achieve 116 050 (full widths at half maximum [FWHM]) for Cs+ ions using an atmospheric pressure electrospray ionization within a total TOF of only 18 ms. An ion transmission efficiency of over 50% was achieved after 600 cycles. CONCLUSIONS: The analytical performance of the newly developed API-MRTOF-MS demonstrated that it is suitable for high resolution and rapid analysis in many fields.

17.
Cureus ; 16(3): e56617, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646377

RESUMO

Robotic-assisted hip and knee arthroplasty represents cutting-edge advancements in orthopedic surgery, harnessing robotic technology to enhance precision, improve clinical outcomes, and facilitate intra-operative procedures. In these robotic-assisted surgeries, the robotic systems assist surgeons in planning and executing joint replacement surgeries, thereby facilitating personalized implant positioning and optimizing the fit and alignment of hip and knee implants. Despite the increasing attention garnered by robotic-assisted hip and knee arthroplasty in recent years, a comprehensive bibliometric analysis using the Scopus database has yet to be conducted. This bibliometric analysis reviews the Scopus database from 1961 until 2022 to investigate the literature on the field of robotic-assisted hip and knee arthroplasty. A total of 577 articles that satisfied the selection criteria were included in this review. The majority of the articles focus more on total knee replacement, compared to total hip replacement and unicompartmental knee arthroplasty. The overwhelming majority of the articles were authored by researchers and clinicians from the United States of America (USA) and the United Kingdom (UK). Similarly, most of the articles with the highest number of citations were authored by researchers and clinicians from these regions. This comprehensive bibliometric analysis using Scopus in the domain of robotic-assisted hip and knee replacement has the potential to act as a roadmap for researchers, clinicians, and policymakers, facilitating informed decision-making, promoting collaborative initiatives, and guiding the development of future studies to further advance the field of robotic-assisted hip and knee arthroplasty.

18.
Int Immunopharmacol ; 132: 111968, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38579565

RESUMO

BACKGROUND: Ulcerative colitis (UC) is an inflammatory disease whose pathogenesis and mechanisms have not been fully described. The m6A methylation modification is a general mRNA modification in mammalian cells and is closely associated with the onset and progression of inflammatory bowel disease (IBD). Palmatine (PAL) is a biologically active alkaloid with anti-inflammatory and protective effects in animal models of colitis. Accordingly, we examined the role of PAL on colitis by regulating N6-methyladenosine (m6A) methylation. METHODS: A rat experimental colitis model was established by 5 % dextran sulfate sodium (DSS) in drinking water for seven days, then PAL treatment was administered for seven days. The colonic tissue pathology was assessed using hematoxylin-eosin (HE) and disease activity index (DAI). In in vitro studies, a human, spontaneously immortalized non-cancerous colon mucosal epithelial cell line (NCM460) was exposed to 2 % DSS and treated with PAL and cell viability was assayed using Cell Counting Kit-8 (CCK-8). The levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, IL-6, and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA) kits. The level of Zonula occludens-1 (ZO-1) was dectected by immunofluorescence. Transepithelial electrical resistance (TEER) of cells was also assessed. The methyltransferase-like 3 (METTL3), METTL14, AlkB homologate 5 (ALKBH5), and fat mass and obesity-associated protein (FTO) expression levels were assessed by western blotting. The localized expression of m6A was measured by immunofluorescence. RESULTS: PAL significantly prevented bodyweight loss and shortening of the colon in experimental colitis rats, as well as decreasing the DAI and histological damage scores. Furthermore, PAL inhibited the levels of inflammatory factors (TNF-α, IL-6, IL-8, and IL-1ß) in both DSS treated rats and NCM460 cells. In addition, PAL enhanced the expression level of ZO-1, and increased the transepithelial electrical resistance to repaire intestinal barrier dysfunction. Colitis occurred due to decreased m6A levels, and the increased FTO expression led to a colitis phenotype. PAL markedly enhanced the METTL3 and METTL14 expression levels while decreasing ALKBH5 and FTO expression levels. CONCLUSIONS: The findings demonstrated that PAL improved DSS-induced experimental colitis. This effect was associated with inhibiting FTO expression and regulating m6A methylation.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Alcaloides de Berberina , Citocinas , Sulfato de Dextrana , Modelos Animais de Doenças , Ratos Sprague-Dawley , Animais , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Masculino , Alcaloides de Berberina/farmacologia , Alcaloides de Berberina/uso terapêutico , Citocinas/metabolismo , Ratos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Linhagem Celular , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo
19.
Curr Pharm Des ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38616753

RESUMO

BACKGROUND: Acute Respiratory Distress Syndrome (ARDS) is an acute life-threatening disease, and luteolin has the potential to become a therapeutic agent for ARDS. However, its mechanism of action has not yet been clarified. OBJECTIVE: The present study explored the potential effects and mechanisms of luteolin in the treatment of ARDS through network pharmacology analysis and verified them through biological experiments. METHODS: The potential targets of luteolin and ARDS were obtained from online databases. Functional enrichment and protein-protein interaction (PPI) analyses were performed to explore the underlying molecular mechanisms and to identify hub targets. Molecular docking was used to verify the relationship between luteolin and target proteins. Finally, the effects of luteolin on key signaling pathways and biological processes were verified by in vitro and in vivo experiments. RESULTS: A total of 146 luteolin- and 496 ARDS-related targets were extracted from public databases. The network pharmacological analysis suggested that luteolin could inhibit ARDS through the following potential therapeutic targets: AKT1, RELA, and NFKBIA. Inflammatory and oxidative stress responses were the main biological processes involved, with the AKT/NF-κB signaling pathway being the key signaling pathway targeted by luteolin for the treatment of ARDS. Molecular docking analysis indicated that luteolin had a good binding affinity to AKT1, RELA, and NFKBIA. The in vitro and in vivo experiments revealed that luteolin could regulate the inflammatory response and oxidative stress in the treatment of ARDS by inhibiting the AKT/NF- κB signaling pathway. CONCLUSION: Luteolin could reduce the production of reactive oxygen species and inflammatory factors by inhibiting the AKT/NF-κB signaling pathway, thus reducing apoptosis and attenuating ARDS.

20.
PLoS One ; 19(4): e0301420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593140

RESUMO

The COVID-19 pandemic has been present globally for more than three years, and cross-border transmission has played an important role in its spread. Currently, most predictions of COVID-19 spread are limited to a country (or a region), and models for cross-border transmission risk assessment remain lacking. Information on imported COVID-19 cases reported from March 2020 to June 2022 was collected from the National Health Commission of China, and COVID-19 epidemic data of the countries of origin of the imported cases were collected on data websites such as WHO and Our World in Data. It is proposed to establish a prediction model suitable for the prevention and control of overseas importation of COVID-19. Firstly, the SIR model was used to fit the epidemic infection status of the countries where the cases were exported, and most of the r2 values of the fitted curves obtained were above 0.75, which indicated that the SIR model could well fit different countries and the infection status of the region. After fitting the epidemic infection status data of overseas exporting countries, on this basis, a SIR-multiple linear regression overseas import risk prediction combination model was established, which can predict the risk of overseas case importation, and the established overseas import risk model overall P <0.05, the adjusted R2 = 0.7, indicating that the SIR-multivariate linear regression overseas import risk prediction combination model can obtain better prediction results. Our model effectively estimates the risk of imported cases of COVID-19 from abroad.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , China/epidemiologia , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA