Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chin J Cancer Res ; 36(3): 306-321, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988489

RESUMO

Gastric cancer is one of the most prevalent cancers worldwide, and human epidermal growth factor receptor 2 (HER2)-positive cases account for approximately 20% of the total cases. Currently, trastuzumab + chemotherapy is the recommended first-line treatment for patients with HER2-positive advanced gastric cancer, and the combination has exhibited definite efficacy in HER2-targeted therapy. However, the emergence of drug resistance during treatment considerably reduces its effectiveness; thus, it is imperative to investigate the potential mechanisms underlying resistance. In the present review article, we comprehensively introduce multiple mechanisms underlying resistance to trastuzumab in HER2-positive gastric cancer cases, aiming to provide insights for rectifying issues associated with resistance to trastuzumab and devising subsequent treatment strategies.

2.
Toxicon ; 218: 88-98, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36113685

RESUMO

Antimicrobial peptides (AMPs) have started to garner more interest as novel antimicrobial agents. The scorpion venom peptide ctry2459 was modified to CT-K3K7 by lysine substitutions at the 3rd and 7th positions to increase the cationic properties. We discovered that the modified peptides CT-K3K7 had improved antibacterial activity, higher thermal stability, as well as lower hemolytic activity. It can kill S. aureus and P. aeruginosa rapidly, and reduce the production of biofilm and live bacterial residues in biofilm in vitro. CT-K3K7 has also been demonstrated to decrease bacterial counts, abscess area, and inflammatory cell infiltration in the mouse subcutaneous abscess models that were duplicated by S. aureus and P. aeruginosa. CT-K3K7 has difficulty in inducing S. aureus and P. aeruginosa to develop drug resistance, which may be related to the bactericidal properties. CT-K3K7 increases cationic properties by lysine substitutions can increase the electrostatic force between the peptides and the bacterial surface, which can lead to an increase in bacterial membrane permeability and DNA binding. In conclusion, the modified peptide CT-K3K7 enhances the antimicrobial activity and can be a novel antimicrobial agent candidate for the treatment of infections by S. aureus and P. aeruginosa.


Assuntos
Anti-Infecciosos , Venenos de Escorpião , Abscesso , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , DNA , Lisina/química , Camundongos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Escorpiões , Staphylococcus aureus , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA