Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Macro Lett ; 11(4): 510-516, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35575331

RESUMO

The annihilation of typical individual defects in hexagonal cylinder-forming block copolymers is investigated using the self-consistent field theory (SCFT) in conjunction with the string method. Usually, defect removal in two-dimensional hexagonal patterns involves reorganizing the cylindrical domains. Unlike atoms in solid crystals, the self-assembled cylindrical domains of block copolymers are "soft". Thus, the kinetic motions of the cylindrical domains resemble liquid droplets. Dislocations in hexagonal patterns are eliminated via creating and removing cylindrical domains. Our results show that new cylindrical domains are created via either a nucleation-like process or a fission-like process, whereas excessive domains are eliminated via a fusion-like or evaporation-like process. For weakly segregated block copolymers, the nucleation-like and evaporation-like processes are preferred.

2.
Trends Biotechnol ; 36(12): 1287-1298, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30104012

RESUMO

Pyrolysis, one of the most promising thermal conversion technologies for biomass conversion, can decompose biomass into solid bio-char, liquid bio-oil, and combustible gas to meet different energy needs. However, pyrolysis efficiency and product quality are not as good as expected when raw biomass is used owing to the properties of raw biomass (e.g., high moisture, oxygen, and alkali metal contents). Torrefaction is an emerging biomass pretreatment technology that can improve the physical and chemical properties of raw biomass, and pyrolysis efficiency and final product quality can therefore be improved by using torrefied biomass. We review several advantages of pyrolysis of torrefied biomass in terms of the conversion process and final product quality.


Assuntos
Biomassa , Temperatura Alta , Pirólise
3.
J Chem Phys ; 148(20): 204908, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29865835

RESUMO

In equilibrium, copolymers self-assemble into spatially modulated phases with long-range order. When the system is quenched far below the order-disorder transition temperature, however, such an idealized, defect-free structure is difficult to obtain in experiments and simulations, instead a fingerprint-like structure forms. The relaxation toward long-range order is very protracted because it involves numerous thermally activated processes, and the rugged free-energy landscape has been likened to that of glass-forming systems. Using large-scale particle-based simulations of high-aspect-ratio, quasi-two-dimensional systems with periodic boundary condition, we study the kinetics of structure formation in symmetric, lamella-forming diblock copolymers after a quench from the disordered state. We characterize the ordering process by the correlation length of the lamellar structure and its Euler characteristic and observe that the growth of the correlation length and the rate of change of the Euler characteristic significantly slow down in the range of incompatibilities, 15 ≤ χN ≤ 20, studied. The increase of the time scale of ordering is, however, gradual. The density fields of snapshots of the particle-based simulations are used as starting values for self-consistent field theory (SCFT) calculations. The latter converge to the local, metastable minimum of the free-energy basin. This combination of particle-based simulations and SCFT calculations allows us to relate an instantaneous configuration of the particle-based model to a corresponding metastable free-energy minimum of SCFT-the inherent morphology-and we typically observe that a change of a free-energy basin is associated with a change of the Euler characteristic of the particle-based morphology, i.e., changes of free-energy basins are correlated to changes of the domain topology. Subsequently, we employ the string method in conjunction with SCFT to study the minimum free-energy paths (MFEPs) of changes of the domain topology. Since the time scales of relaxing toward the inherent morphology within a free-energy basin and jumps between free-energy basins are not well separated, the MFEP may overestimate the barriers encountered in the course of ordering.

4.
Front Pharmacol ; 9: 371, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713285

RESUMO

Streptococcus suis is difficult to treat and responsible for various infections in humans and pigs. It can also form biofilms and induce persistent infections. Rhizoma Coptidis is a medicinal plant widely used in Traditional Chinese Medicine. Although the inhibitory effects of Rhizoma Coptidis on biofilm formation have been investigated in several studies, the ability of Rhizoma Coptidis to inhibit S. suis biofilm formation and the underlying mechanisms have not yet been reported. In this study, we showed that sub-minimal inhibitory concentrations (25 and 50 µg mL-1) of water extracts of Rhizoma Coptidis (Coptis deltoidea C.Y.Cheng & P.K.Hsiao, obtained from Sichuan Province) were sufficient to inhibit biofilm formation, as shown in the tissue culture plate (TCP) method and scanning electron microscopy. Real-time PCR and iTRAQ were used to measure gene and protein expression in S. suis. Sub-minimum inhibitory concentrations (25 and 50 µg mL-1) of Rhizoma Coptidis water extracts inhibited S. suis adhesion significantly in an anti-adherence assay. Some genes, such as gapdh, sly, and mrp, and proteins, such as antigen-like protein, CPS16V, and methyltransferase H, involved in adhesion were significantly modulated in cells treated with 50 µg mL-1 of Rhizoma Coptidis water extracts compared to untreated cells. The results from this study suggest that compounds in Rhizoma Coptidis water extracts play an important role in inhibiting adhesion of S. suis cells and, therefore, biofilm formation.

5.
Front Pharmacol ; 8: 543, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28871227

RESUMO

Staphylococcus xylosus is an opportunistic pathogen that causes infection in humans and cow mastitis. And S. xylosus possesses a strong ability to form biofilms in vitro. As biofilm formation facilitates resistance to antimicrobial agents, the discovery of new medicinal properties for classic drugs is highly desired. Aspirin, which is the most common active component of non-steroidal anti-inflammatory compounds, affects the biofilm-forming capacity of various bacterial species. We have found that aspirin effectively inhibits biofilm formation of S. xylosus by Crystal violet (CV) staining and scanning electron microscopy analyses. The present study sought to elucidate possible targets of aspirin in suppressing S. xylosus biofilm formation. Based on an isobaric tag for relative and absolute quantitation (iTRAQ) fold-change of >1.2 or <0.8 (P-value < 0.05), 178 differentially expressed proteins, 111 down-regulated and 67 up-regulated, were identified after application of aspirin to cells at a 1/2 minimal inhibitory concentration. Gene ontology analysis indicated enrichment in metabolic processes for the majority of the differentially expressed proteins. We then used the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database to analyze a large number of differentially expressed proteins and identified genes involved in biosynthesis of amino acids pathway, carbon metabolism (pentose phosphate and glycolytic pathways, tricarboxylic acid cycle) and nitrogen metabolism (histidine metabolism). These novel proteins represent candidate targets in aspirin-mediated inhibition of S. xylosus biofilm formation at sub-MIC levels. The findings lay the foundation for further studies to identify potential aspirin targets.

6.
Front Pharmacol ; 8: 26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194111

RESUMO

Streptococcus suis (S. suis) is a zoonotic pathogen that causes severe disease symptoms in pigs and humans. Syringa oblata Lindl. distributed in the middle latitudes of Eurasia and North America were proved as the most development potential of Chinese Medicine. In this study, biofilm formation by S. suis decreased after growth with 1/2 MIC, 1/4 MIC, or 1/8 MIC of Syringa oblata Lindl. aqueous extract and rutin. Scanning electron microscopy analysis revealed the potential effect of Syringa oblata Lindl. aqueous extract and rutin against biofilm formation by S. suis. Using iTRAQ technology, comparative proteomic analyses was performed at two conditions: 1/2 MIC of Syringa oblata Lindl. aqueous extract treated and non-treated cells. The results revealed the existence of 28 proteins of varying amounts. We found that the majority of the proteins were related to cell growth and metabolism. We also found that Syringa oblata Lindl. Aqueous extract affected the synthesis enzymes. In summary, Syringa oblata Lindl. aqueous extract might be used to inhibit the biofilm formation effectively by S. suis, and the active ingredients of the Syringa oblate Lindl. aqueous extract is rutin. The content of rutin is 9.9 ± 0.089 mg/g dry weight.

7.
J Phys Condens Matter ; 26(11): 115601, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24589877

RESUMO

We study the spin-1/2 J1-J2 Heisenberg model on a square lattice using the cluster mean-field theory. We find a rapid convergence of phase boundaries with increasing cluster size. By extrapolating the cluster size L to infinity, we obtain accurate phase boundaries J(c1)(2) ≈ 0.42 (between the Néel antiferromagnetic phase and non-magnetic phase), and J(c2)(2) ≈ 0.59 (between non-magnetic phase and the collinear antiferromagnetic phase). Our results support the second-order phase transition at J(c1)(2) and the first-order one at J(c2)(2). For the spin-anisotropic J1-J2 model, we present its finite temperature phase diagram and demonstrate that the non-magnetic state is unstable towards the first-order phase transition under intermediate spin anisotropy.


Assuntos
Compostos Ferrosos/química , Campos Magnéticos , Modelos Estatísticos , Transição de Fase , Teoria Quântica , Anisotropia , Simulação por Computador , Transferência de Energia , Marcadores de Spin , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA