Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 47(21): 5696-5699, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219306

RESUMO

The uncoated single-mode fiber has been extensively researched as an opto-mechanical sensor since it can achieve substance identification of the surrounding media by exciting and detecting transverse acoustic waves via forward stimulated Brillouin scattering (FSBS), but it has the danger of being easily broken. Although polyimide-coated fibers are reported to allow transverse acoustic waves transmission through the coating to reach the ambient while maintaining the mechanical properties of the fiber, it still suffers from the problems of hygroscopic property and spectral instability. Here, we propose a distributed FSBS-based opto-mechanical sensor using an aluminized coating optical fiber. Benefiting from the quasi-acoustic impedance matching condition of the aluminized coating and silica core cladding, aluminized coating optical fibers not only have stronger mechanical properties and higher transverse acoustic wave transmission efficiency but also have a higher signal-to-noise ratio, compared with the polyimide coating fibers. The distributed measurement ability is verified by identifying air and water around the aluminized coating optical fiber with a spatial resolution of 2 m. In addition, the proposed sensor is immune to external relative humidity changes, which is beneficial for liquid acoustic impedance measurements.

2.
Opt Express ; 27(20): 29340-29349, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684670

RESUMO

In this paper, we report a novel in-fiber Mach-Zehnder interferometer based directional torsion sensor, in which a section of two-mode fiber is sandwiched between two single mode fibers by over core-offset splicing technique. The variety of fringe visibility demonstrates the strong dependence on offset and fiber length. For the first time the near zero visibility at 0° rotating state is obtained by fine offset-modulation. The experimental results show that, with 0° turning point, the counter-clockwise to the clockwise direction can be recognized by the reversal from peak to dip of fringes. Moreover, a competitive sensitivity of 21.485 dB/(rad/cm) is gained with high linearity and low-temperature crosstalk in the range from -40 rad/m to 40 rad/m. Without any pre-twisting, our fiber torsion sensor is small size, ease of fabrication, cost efficiency and very potential in the applications of industrial and artificial intelligence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA