Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 69(16): 2555-2564, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38972807

RESUMO

Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskite solar cells (PSCs) using the one-step spin-coating method. Here, we strategically employed sparingly soluble germanium iodide as a homogenized bulk in-situ reconstruction inducing material preferentially aggregated at the perovskite buried interface with gradient doping, markedly reducing deep-level traps and withstanding local lattice strain, while minimizing non-radiative recombination losses and enhancing the charge carrier lifetime over 9 µs. Furthermore, this gradient doping assisted in modifying the band diagram at the buried interface into a desirable flattened alignment, substantially mitigating the energy loss of charge carriers within perovskite films and improving the carrier extraction equilibrium. As a result, the optimized device achieved a champion power conversion efficiency of 25.24% with a fill factor of up to 84.65%, and the unencapsulated device also demonstrated excellent light stability and humidity stability. This work provides a straightforward and reliable homogenization strategy of perovskite components for obtaining efficient and stable PSCs.

2.
Nanomicro Lett ; 15(1): 182, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450089

RESUMO

Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air. However, scaling up to high-efficiency carbon-based solar modules hinges on reliable deposition of uniform defect-free perovskite films over large areas, which is an unsettled but urgent issue. In this work, a long-chain gemini surfactant is introduced into perovskite precursor ink to enforce self-assembly into a network structure, considerably enhancing the coverage and smoothness of the perovskite films. The long gemini surfactant plays a distinctively synergistic role in perovskite film construction, crystallization kinetics modulation and defect passivation, leading to a certified record power conversion efficiency of 15.46% with Voc of 1.13 V and Jsc of 22.92 mA cm-2 for this type of modules. Importantly, all of the functional layers of the module are printed through a simple and high-speed (300 cm min-1) blade coating strategy in ambient atmosphere. These results mark a significant step toward the commercialization of all-printable carbon-based perovskite solar modules.

3.
Inflammation ; 42(2): 559-571, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30343390

RESUMO

CD4+ T cell subset imbalance plays an important role in the development of diabetic complications. Neutrophils have recently been known as the regulator of CD4+ T cell differentiation. However, whether neutrophils affect CD4+ T cell population in diabetes is still elusive. In this study, we investigated the effect of neutrophils stimulated with advanced glycated end products (AGEs), the marker of diabetes, on CD4+ T cell differentiation and its underlying mechanism. Our data showed that the cultural medium of healthy adult neutrophils treated with AGEs increased expressions of both Th1 (IFN-γ) and Th17 (IL-17) phenotypes and the transcription factors of Th1 (Tbet) and Th17 (RORγt) in naive CD4+T cells and CD4+CD25+FoxP3+ (Treg) T cells in vitro. Next, we found that AGEs induced the generations of myeloperoxidase (MPO) and neutrophil elastase (NE) in neutrophils; inhibition of MPO or NE attenuated the effect of AGE-stimulated neutrophils on CD4+ T cell bias. Furthermore, receptor for AGEs (RAGE) inhibitor interrupted AGE-induced MPO and NE expressions, but MPO and NE inhibitions did not change AGE-increased RAGE gene expression. These results suggested that AGEs drive the effect of neutrophils on CD4+ T cell differentiation into pro-inflammatory program through inducing MPO and NE productions in neutrophils, which is mediated by AGE-RAGE interaction.


Assuntos
Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/efeitos dos fármacos , Produtos Finais de Glicação Avançada/farmacologia , Elastase de Leucócito/metabolismo , Neutrófilos/fisiologia , Peroxidase/metabolismo , Adulto , Células Cultivadas , Humanos , Inflamação , Elastase de Leucócito/genética , Peroxidase/genética , Células Th1/imunologia , Células Th17/imunologia , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA