Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18886, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143193

RESUMO

Fire and explosion hazards pose significant safety concerns in the processing and storage of biomass particles, warranting the safe utilization of these particles. This study employed scanning electron microscopy, thermogravimetric analysis, and cone calorimetry to investigate the thermal hazards and toxicity of raw biomass particles from four prevalent agricultural crops in China: rice, sorghum, corn, and reed. Among the samples, corn exhibited the highest heat output of 8006.82 J/g throughout the thermal decomposition process. The quantitative evaluation of critical heat flux, heat release rate intensity, fire growth rate index (FIGRA), post-ignition fire acceleration (PIFA) and flashover potential (X) revealed a substantial fire risk inherent to all the examined straw samples. Notably, corn displayed the lowest FIGRA value of 8.30 kW/m2 s, while rice demonstrated the minimum PIFA value of 16.11 kW/m2 s. Moreover, the X values for all four biomass particle types exceeded 10 under varying external heat flux levels, indicating their high propensity for fire hazards. Analysis of CO and CO2 emissions during combustion showed all four biomass samples exhibited high concentrations throughout, from the initial stages to the end. The present study offers crucial insights for formulating comprehensive fire safety guidelines tailored to the storage and processing of biomass particles.


Assuntos
Biomassa , Produtos Agrícolas , China , Oryza/química , Temperatura Alta , Incêndios , Zea mays , Termogravimetria , Calorimetria , Explosões , Sorghum
2.
Heliyon ; 10(13): e33704, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040376

RESUMO

The efficacy of berberine in managing diabetes through modulation of gut microbiome has been established through fecal sample analyses. However, relying solely on fecal materials constrains our comprehension of berberine's effects on diverse gastrointestinal locations. This study specifically explores the ileocecal region, a segment characterized by higher microbial diversity than fecal samples. Berberine exhibits a robust hypoglycemic impact by significantly reducing glucose levels in blood and urine. Beyond glycemic control, berberine ameliorates various diabetes-related symptoms in serum, including increased insulin and leptin, but decreased NEFA and MDA. Notably, berberine demonstrates liver-protective functions by alleviating oxidative stress and enhancing hepatic glycogen abundance. These outcomes prompted a high-throughput sequencing analysis of the ileocecal microbiome, revealing an augmentation of beneficial bacterial genera (four genera in the Lachnospiraceae family, Erysipelatoclostridium, and Escherichia-Shigella), along with a reduction in harmful bacterial genera (Romboutsia). Additionally, we predicted the impact of the ileocecal microbiome on clinically relevant factors associated with diabetes. These findings elucidate the multi-pathway mechanisms of berberine in treating T2D, underscoring its potential as a natural anti-diabetic agent or functional food, particularly through the modulation of the gut microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA