Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Clin Genet ; 103(6): 663-671, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36999564

RESUMO

Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a specific LGMD caused by a gene mutation encoding the calcium-dependent neutral cysteine protease calpain-3 (CAPN3). In our study, the compound heterozygosity with two missense variants c.635 T > C (p.Leu212Pro) and c.2120A > G (p.Asp707Gly) was identified in patients with LGMDR1. However, the pathogenicity of c.635 T > C has not been investigated. To evaluate the effects of this novel likely pathogenic variant to the motor system, the mouse model with c.635 T > C variant was prepared by CRISPR/Cas9 gene editing technique. The pathological results revealed that a limited number of inflammatory cells infiltrated the endomyocytes of certain c.635 T > C homozygous mice at 10 months of age. Compared with wild-type mice, motor function was not significantly impaired in Capn3 c. 635 T > C homozygous mice. Western blot and immunofluorescence assays further indicated that the expression levels of the Capn3 protein in muscle tissues of homozygous mice were similar to those of wild-type mice. However, the arrangement and ultrastructural alterations of the mitochondria in the muscular tissues of homozygous mice were confirmed by electron microscopy. Subsequently, muscle regeneration of LGMDR1 was simulated using cardiotoxin (CTX) to induce muscle necrosis and regeneration to trigger the injury modification process. The repair of the homozygous mice was significantly worse than that of the control mice at day 15 and day 21 following treatment, the c.635 T > C variant of Capn3 exhibited a significant effect on muscle regeneration of homozygous mice and induced mitochondrial damage. RNA-sequencing results demonstrated that the expression levels of the mitochondrial-related functional genes were significantly downregulated in the mutant mice. Taken together, the results of the present study strongly suggested that the LGMDR1 mouse model with a novel c.635 T > C variant in the Capn3 gene was significantly dysfunctional in muscle injury repair via impairment of the mitochondrial function.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Mutação de Sentido Incorreto , Humanos , Animais , Camundongos , Proteínas Musculares/genética , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Calpaína/genética , Modelos Animais de Doenças
2.
Mol Cells ; 46(4): 219-230, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36625318

RESUMO

Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome de Down/metabolismo , Diferenciação Celular/genética , Regulação para Cima , Mitocôndrias/metabolismo
3.
Genes (Basel) ; 13(9)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36140726

RESUMO

Pathogenic variants of zinc finger C4H2-type containing (ZC4H2) on the X chromosome cause a group of genetic diseases termed ZC4H2-associated rare disorders (ZARD), including Wieacker-Wolff Syndrome (WRWF) and Female-restricted Wieacker-Wolff Syndrome (WRWFFR). In the current study, a de novo c.352C>T (p.Gln118*) mutation in ZC4H2 (NM_018684.4) was identified in a female neonate born with severe arthrogryposis multiplex congenita (AMC) and Pierre-Robin sequence (cleft palate and micrognathia). Plasmids containing the wild-type (WT), mutant-type (MT) ZC4H2, or GFP report gene (N) were transfected in 293T cell lines, respectively. RT-qPCR and western blot analysis showed that ZC4H2 protein could not be detected in the 293T cells transfected with MT ZC4H2. The RNA seq results revealed that the expression profile of the MT group was similar to that of the N group but differed significantly from the WT group, indicating that the c.352C>T mutation resulted in the loss of function of ZC4H2. Differentially expressed genes (DEGs) enrichment analysis showed that c.352C>T mutation inhibited the expression levels of a series of genes involved in the oxidative phosphorylation pathway. Subsequently, expression levels of ZC4H2 were knocked down in neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSCs) by lentiviral-expressed small hairpin RNAs (shRNAs) against ZC4H2. The results also demonstrated that decreasing the expression of ZC4H2 significantly reduced the growth of NSCs by affecting the expression of genes related to the oxidative phosphorylation signaling pathway. Taken together, our results strongly suggest that ZC4H2 c.352C>T (p.Gln118*) mutation resulted in the loss of protein function and caused WRWFFR.


Assuntos
Códon sem Sentido , Proteínas Nucleares , Animais , Apraxias , Proteínas de Transporte/genética , Contratura , Feminino , Doenças Genéticas Ligadas ao Cromossomo X , Peptídeos e Proteínas de Sinalização Intracelular/genética , Atrofia Muscular , Proteínas Nucleares/genética , Oftalmoplegia , Fenótipo
4.
Int J Neurosci ; 132(6): 582-588, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33043782

RESUMO

AIM: Pantothenate kinase associated neurodegeneration (PKAN) is a severe autosomal recessive rare disease and characterized by iron accumulation in the basal ganglia. To investigate the pathogenesis of this disease in two sibling patients with PANK in a Chinese family, whole-exome variant detection and functional analysis were performed. MATERIALS AND METHODS: Clinical and radiographic investigations were performed in the two brother patients. Whole exome sequencing (WES) was used in mutation detection, and the mutations were confirmed by Sanger sequencing. A longevity cohort genetic database was applied as Chinese urban controls. Bioinformatic analysis was performed to predict the pathogenicity. RESULTS: Compound heterozygous mutations of PANK2 were detected in two sibling brothers with PKAN in a Chinese family: c.510_522del (p.A170fs) and c.1319G > C (p.R440P) in the transcript NM_153638. PANK2: c.510_522del (p.A170fs) was absent in public data and the Chinese urban controls. Bioinformatics analysis showed that the above two variants were pathogenicity. CONCLUSIONS: We identified a rare compound heterozygous combination of PANK2 mutations found in a Chinese family in which two sibling brothers suffered from PKAN. PANK2 c.510_522del (p.A170fs) was the first reported to be a PKAN pathogenic variant.


Assuntos
Neurodegeneração Associada a Pantotenato-Quinase , Fosfotransferases (Aceptor do Grupo Álcool) , Povo Asiático/genética , China , Humanos , Masculino , Mutação , Neurodegeneração Associada a Pantotenato-Quinase/genética , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética
5.
Exp Ther Med ; 22(1): 701, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34007310

RESUMO

Down syndrome (DS), caused by the trisomy of chromosome 21, is one of the common chromosomal disorders, the main clinical manifestations of which are delayed nervous development and intellectual disability. Long non-coding RNAs (lncRNAs) have critical roles in various biological processes, including cell growth, cell cycle regulation and differentiation. The roles of abnormally expressed lncRNAs have been previously reported; however, the biological functions and regulatory patterns of lncRNAs in DS have remained largely elusive. The aim of the present study was to perform a whole-genome-wide identification of lncRNAs and mRNAs associated with DS. In addition, global expression profiling analysis of DS-induced pluripotent stem cells was performed and differentially expressed (DE) lncRNAs and mRNAs were screened. Furthermore, the target genes and functions of the DE lncRNAs were predicted using Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis. The results revealed that the majority of the lncRNAs exerted functions in DS via cis-acting target genes. In addition, the results of the enrichment analysis indicated that these target genes were mainly involved in nervous and muscle development in DS. In conclusion, this integrative analysis using lncRNA and mRNA profiling provided novel insight into the pathogenesis of DS and it may promote the diagnosis and development of novel therapeutics for this disease.

6.
Int J Biochem Cell Biol ; 92: 115-120, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28965985

RESUMO

Trisomy 21 is the most common chromosomal disorder and underlies Down syndrome. Epigenetics, such as DNA methylation and post-translational histone modifications, plays a vital role in Down syndrome. However, the functions of epigenetics-related long noncoding RNAs (lncRNAs), found to have an impact on neural diseases such as Alzheimer's disease, remain unknown in Down syndrome. In this study, we analyzed the RNA sequencing data from Down syndrome-induced pluripotent stem cells (iPSCs) and normal iPSCs. A large number of lncRNAs were identified differentially expressed in Down syndrome-iPSCs. Notably, stronger perturbation was shown in the expression of lncRNAs compared to protein coding genes (Kolmogorov-Smirnov test, P<0.05), suggesting that lncRNAs play more important roles in Down syndrome. Through gene set enrichment analysis and bi-clustering, we also found that most of the differential expressed lncRNAs were closely associated with mitochondrial functions (e.g. mitochondrion organization, P=3.21×10-17; mitochondrial ATP synthesis coupled electron transport, P=1.73×10-19 and mitochondrial membrane organization, P=4.04×10-8). PCR-array and qRT-PCR results revealed that almost all genes related to mitochondria were down-regulated in Down syndrome-iPSCs, implying that mitochondria were dysfunctional in Down syndrome (e.g. ATP5B, Fold Change=-8.2317; COX6A1, Fold Change=-12.7788 and SLC25A17, Fold Change=-22.1296). All in all, our study indicated that a stronger perturbation of lncRNAs expression may lead to the dysfunction of mitochondria in Down syndrome.


Assuntos
Síndrome de Down/genética , Síndrome de Down/patologia , Perfilação da Expressão Gênica , Mitocôndrias/genética , RNA Longo não Codificante/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
7.
Oncotarget ; 7(38): 61215-61228, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27542205

RESUMO

Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage-specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , RNA Longo não Codificante/genética , Transcriptoma , Animais , Blastocisto/metabolismo , Ciclo Celular , Desenvolvimento Embrionário/genética , Epigênese Genética , Perfilação da Expressão Gênica , Genoma , Genoma Humano , Humanos , Camundongos , Modelos Estatísticos , Mórula/metabolismo , Oócitos/metabolismo , Curva ROC , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Tempo , Zigoto/metabolismo
8.
Mol Med Rep ; 14(2): 1227-34, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27278638

RESUMO

Down syndrome (DS) is the most common form of intellectual disability associated with central nervous system abnormalities and results from an extra complete or partial copy of human chromosome 21. However, whether DNA hydroxymethylation is perturbed in a specific gene associated with DS phenotypes, or the alteration of DNA hydroxymethy-lation results in changes of gene expression in DS remains unidentified. The current study mapped 5­methylcytosine and 5­hydroxymethylcytosine at CpG islands of the PR domain containing 8 (PRDM8) in the peripheral blood of 16 DS and 19 normal samples by oxidative bisulfite-pyrosequencing. Furthermore, the association of the expression levels of the two transcripts and epigenetic modification in different genomic contexts of PRDM8 was analyzed. The results demonstrated hypermethylation and hyperhydroxymethylation at the internal promoter of PRDM8 in DS, and significantly increased the expression of PRDM8 transcript variant 2 in the DS patients (median 3.9 vs. 2.04; P=0.016), accompanied by a positive correlation between the expression of two PRDM8 transcripts and hydroxymethylation at the corresponding external and internal promoters in patients, although not in the controls. A similar association was observed between the expression of transcript variant 1 and intragenic methylation of PRDM8. Taken together, the results of the present study suggest a critical role for DNA hydroxymethylation and methylation in regulating abnormal PRDM8 overexpression in DS.


Assuntos
Proteínas de Transporte/genética , Metilação de DNA , Síndrome de Down/genética , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Ilhas de CpG , Proteínas de Ligação a DNA , Epigênese Genética , Feminino , Loci Gênicos , Histona Metiltransferases , Humanos , Lactente , Recém-Nascido , Masculino , RNA Mensageiro/genética
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 33(3): 292-5, 2016 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-27264806

RESUMO

OBJECTIVE: To explore the disease-causing mutations in a patient suspected for giant axonal neuropathy(GAN). METHODS: Target sequence capture sequencing was used to screen potential mutations in genomic DNA extracted from peripheral blood sample of the patient. Sanger sequencing was applied to confirm the detected mutation. The mutation was verified among 400 GAN alleles from 200 healthy individuals by Sanger sequencing. The function of the mutations was predicted by bioinformatics analysis. RESULTS: The patient was identified as a compound heterozygote carrying two novel pathogenic GAN mutations, i.e., c.778G>T (p.Glu260Ter) and c.277G>A (p.Gly93Arg). Sanger sequencing confirmed that the c.778G>T (p.Glu260Ter) mutation was inherited from his father, while c.277G>A (p.Gly93Arg) was inherited from his mother. The same mutations was not found in the 200 healthy individuals. Bioinformatics analysis predicted that the two mutations probably caused functional abnormality of gigaxonin. CONCLUSION: Two novel GAN mutations were detected in a patient with GAN. Both mutations are pathogenic and can cause abnormalities of gigaxonin structure and function, leading to pathogenesis of GAN. The results may also offer valuable information for similar diseases.


Assuntos
Proteínas do Citoesqueleto/genética , Neuropatia Axonal Gigante/genética , Mutação , Sequência de Aminoácidos , Criança , Biologia Computacional , Humanos , Masculino , Dados de Sequência Molecular , Análise de Sequência de DNA
10.
Int J Mol Med ; 38(2): 446-56, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27277384

RESUMO

Despite evidence for the involvement of microRNAs (miRNAs or miRs) in pediatric asthma, the mechanism responsible has not yet been fully elucidated. We aimed to identify novel miRNAs and to study their pathogenic role(s) in children with dust mite-induced asthma in order to gain a better understanding of the underlying mechanism responsible for this disease. For this purpose, 62 patients with asthma as well as 62 age- and gender-matched healthy controls were recruited. Twelve pairs of subjects were randomly subjected to microarray-based discovery analysis using a miRCURY LNA™ array. The differential expression of miRNAs and their targeted messenger RNAs were validated using RT-qPCR. Plasma concentrations of cytokines were determined using an enzyme-linked immunosorbent assay (ELISA) kit. The results revealed that three novel miRNAs - miR-22-3p, miR­513a-5p and miR-625-5p - were significantly downregulated in the asthma group compared with the control group (p<0.01), whereas the transcript levels of Cbl proto-oncogene, E3 ubiquitin protein ligase (CBL), peroxisome proliferator­activated receptor gamma, coactivator 1 beta (PPARGC1B), and estrogen receptor 1 (ESR1) that are targeted by these miRNAs were increased (p<0.01). There were significant differences in the plasma concentrations of γ-interferon, tumor necrosis factor-α, interleukin (IL)-12 and IL-10 between the two groups (p<0.05). Thus, miR-513a-5p, miR-22-3p and miR-625-5p may have an impact on the regulation of the immune response and inflammatory cytokine pathways through the regulation of their target gene(s), CBL, PPARGC1B and ESR1, which may then lead to a dust mite-induced asthma attack. Our findings may provide novel insights into the pathogenesis of pediatric asthma.


Assuntos
Asma/genética , Asma/parasitologia , Receptor alfa de Estrogênio/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Pyroglyphidae/fisiologia , Animais , Asma/sangue , Estudos de Casos e Controles , Criança , Citocinas/sangue , Demografia , Regulação para Baixo/genética , Receptores ErbB/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Mediadores da Inflamação/metabolismo , Masculino , MicroRNAs/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Quinase Syk/metabolismo , Regulação para Cima/genética
11.
Biotechnol Lett ; 37(6): 1187-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25700825

RESUMO

OBJECTIVES: To investigate the reasons for the instability of human coagulation factor FVIII (hFVIII) in milk which is an intractable obstacle during the hFVIII production by a transgenic mammary gland bioreactor. RESULTS: We constructed P1A3-hFVIIIBDD and P1A3-hFVIIIBDD-IRES-vWF co-expression cassettes for generating transgenic mice. P1A3-hFVIII/CMV-vWF double heterozygotes were also prepared by mating P1A3-hFVIIIBDD with CMV-vWF mice. hFVIII bioactivity in milk was determined under different storage conditions. The half-life (in vitro) of hFVIII bioactivity in P1A3-hFVIIIBDD-IRES-vWF mice was significantly longer than P1A3-hFVIIIBDD mice [77 ± 4.9 vs. 44 ± 2.6 h at 4 °C, 32.5 ± 5 vs. 19.7 ± 0.6 h at room temperature and 7.4 ± 1.4 vs. 3.4 ± 0.6 at 37 °C, respectively (P < 0.05)]. The half-life (in vitro) of hFVIII bioactivity in milk of double heterozygotes was similar to P1A3-hFVIIIBDD-IRES-vWF ones, demonstrating that the vWF transgene expression in hFVIII transgenic mice can efficiently improve the stabilization of hFVIII bioactivity in milk. CONCLUSION: We provide a new approach of P1A3-hFVIIIBDD-IRES-vWF co-expression to generate more stable hFVIII in transgenic milk with rapid and low cost as well as valuable information for producing pharmaceutical proteins by transgenic mammary gland bioreactor.


Assuntos
Citomegalovirus/genética , Fator VIII/análise , Leite/química , Fator de von Willebrand/análise , Animais , Fator VIII/genética , Expressão Gênica , Vetores Genéticos , Heterozigoto , Humanos , Camundongos Transgênicos , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Temperatura , Transdução Genética , Fator de von Willebrand/genética
12.
Sheng Wu Gong Cheng Xue Bao ; 30(3): 492-503, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-25007585

RESUMO

We established methods to isolate human amniotic fluid-derived progenitor cells (hAFPCs), and analyze the ability of hAFPCs to secrete human coagulation factor IX (hFIX) after gene modification. The hAFPCs were manually isolated by selection for attachment to gelatin coated culture dish. hFIX cDNA was transfected into hAPFCs by using a lentiviral vector. The hFIX protein concentration and activity produced from hAFPCs were determined by enzyme-linked immunosorbent assay (ELISA) and clotting assay. The isolated spindle-shaped cells showed fibroblastoid morphology after three culture passages. The doubling time in culture was 39.05 hours. Immunocytochemistry staining of the fibroblast-like cells from amniotic fluid detected expression of stem cell markers such as SSEA4 and TRA1-60. Quantitative PCR analysis demonstrated the expression of NANOG, OCT4 and SOX2 mRNAs. Transfected hAFPCs could produce and secrete hFIX into the culture medium. The observed concentration of secreted hFIX was 20.37% +/- 2.77% two days after passage, with clotting activity of 16.42% +/- 1.78%. The amount of hFIX:Ag reached a plateau of 50.35% +/- 5.42%, with clotting activity 45.34% +/- 4.67%. In conclusion, this study established method to isolate and culture amniotic fluid progenitor cells. Transfected hAFPCs can produce hFIX at stable levels in vitro, and clotting activity increases with higher hFIX concentration. Genetically engineered hAFPC are a potential method for prenatal treatment of hemophilia B.


Assuntos
Líquido Amniótico/citologia , Separação Celular/métodos , Fator IX/biossíntese , Engenharia Genética , Células-Tronco/citologia , Coagulação Sanguínea , Técnicas de Cultura de Células , DNA Complementar , Vetores Genéticos , Humanos , Células-Tronco/metabolismo , Transfecção
13.
Haematologica ; 99(8): 1304-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24816238

RESUMO

Although ß-thalassemia is one of the most common human genetic diseases, there is still no effective treatment other than bone marrow transplantation. Induced pluripotent stem cells have been considered good candidates for the future repair or replacement of malfunctioning organs. As a basis for developing transgenic induced pluripotent stem cell therapies for thalassemia, ß(654) induced pluripotent stem cells from a ß(654) -thalassemia mouse transduced with the normal human ß-globin gene, and the induced pluripotent stem cells with an erythroid-expressing reporter GFP were used to produce chimeric mice. Using these chimera models, we investigated changes in various pathological indices including hematologic parameters and tissue pathology. Our data showed that when the chimerism of ß(654) induced pluripotent stem cells with the normal human ß-globin gene in ß(654) mice is over 30%, the pathology of anemia appeared to be reversed, while chimerism ranging from 8% to 16% provided little improvement in the typical ß-thalassemia phenotype. Effective alleviation of thalassemia-related phenotypes was observed when chimerism with the induced pluripotent stem cells owning the erythroid-expressing reporter GFP in ß(654) mouse was greater than 10%. Thus, 10% or more expression of the exogenous normal ß-globin gene reduces the degree of anemia in our ß-thalassemia mouse model, whereas treatment with ß(654) induced pluripotent stem cells which had the normal human ß-globin gene had stable therapeutic effects but in a more dose-dependent manner.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco/métodos , Talassemia beta/patologia , Talassemia beta/terapia , Animais , Quimera , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Resultado do Tratamento , Talassemia beta/genética
14.
Biotechnol Lett ; 36(6): 1209-16, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24563315

RESUMO

Human transferrin (hTF) belongs to the iron-binding glycoprotein family. It plays an important role in iron transport throughout the body. Transgenic mice are a good model to study how to produce functional hTF on a large-scale. We have improved the expression of hTF and investigated its regulatory mechanism in transgenic mice. Three expression constructs were prepared in which hTF expression was controlled by different regulatory cassettes of rabbit transferrin (rTF). hTF was secreted into serum of transgenic mice when its expression was controlled by the rTF promoter and enhancer, whereas the rTF enhancer in tandem with the rTF promoter repressed hTF secretion into milk. A significant inverse relationship between methylation of the rTF promoter and hTF expression was observed in liver, heart, mammary gland, and muscle of transgenic mice. The highest concentration of hTF was 700 µg/ml in milk.


Assuntos
Regulação da Expressão Gênica , Elementos Reguladores de Transcrição , Transferrina/biossíntese , Animais , Humanos , Camundongos , Camundongos Transgênicos , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transferrina/genética
15.
J Biotechnol ; 167(4): 427-32, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23942381

RESUMO

The introduction of double-strand breaks (DSBs) at target sites could greatly enhance homologous recombination, and engineered nucleases, such as zinc finger and transcription activator-like effector nucleases, have been successfully developed for making such breaks. In this study, we present a highly efficient site-specific integration strategy based on homologous recombination and ΦC31 integrase. An attB sequence was introduced at the homologous arm of an insertion targeting vector. DSBs at the target locus and donor were then simultaneously generated by the ΦC31 integrase when co-transfected with the donor vector, consequently stimulating homologous recombination. The results demonstrated that our strategy is feasible and the efficiency at the BF4 target site, which we previously identified in the bovine genome, was as high as 93%. The frequency at another site (BF10) was almost two-fold greater in comparison to the vector without homologous arms. This technology requires no sophisticated nuclease design efforts, and the off-target effect is reduced by ΦC31 integrase compared to the use of engineered nucleases, thereby offering a simple and safe way to effectively express a donor gene at a desired locus. This development has great potential value, especially in transgenesis or gene therapy applications.


Assuntos
Recombinação Homóloga , Integrases/metabolismo , Animais , Bovinos , Quebras de DNA de Cadeia Dupla , Marcação de Genes , Técnicas de Transferência de Genes , Genoma , Recombinação Genética , Reparo de DNA por Recombinação
17.
J Genet Genomics ; 40(12): 617-28, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24377868

RESUMO

Hemophilia A (HA) is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. Previous studies showed that introduction of mesenchymal stem cells (MSCs) modified by FVIII-expressing retrovirus may result in phenotypic correction of HA animals. This study aimed at the investigation of an alternative gene therapy strategy that may lead to sustained FVIII transgene expression in HA mice. B-domain-deleted human FVIII (hFVIIIBD) vector was microinjected into single-cell embryos of wild-type mice to generate a transgenic mouse line, from which hFVIIIBD-MSCs were isolated, followed by transplantation into HA mice. RT-PCR and real-time PCR analysis demonstrated the expression of hFVIIIBD in multi-organs of recipient HA mice. Immunohistochemistry showed the presence of hFVIIIBD positive staining in multi-organs of recipient HA mice. ELISA indicated that plasma hFVIIIBD level in recipient mice reached its peak (77 ng/mL) at the 3rd week after implantation, and achieved sustained expression during the 5-week observation period. Plasma FVIII activities of recipient HA mice increased from 0% to 32% after hFVIIIBD-MSCs transplantation. APTT (activated partial thromboplastin time) value decreased in hFVIIIBD-MSCs transplanted HA mice compared with untreated HA mice (45.5 s vs. 91.3 s). Our study demonstrated an effective phenotypic correction in HA mice using genetically modified MSCs from hFVIIIBD transgenic mice.


Assuntos
Terapia Genética/métodos , Hemofilia A/genética , Hemofilia A/terapia , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Tromboplastina/genética , Tromboplastina/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Transgênicos , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Biotechnol Lett ; 34(11): 1991-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22829284

RESUMO

Prolactin promotes the expression of exogenous human transferrin gene in the milk of transgenic mice. To elucidate this, a recombinant plasmid of bovine prolactin plus human transferrin vector was co-transfected into cultured murine mammary gland epithelial cells. Prolactin-receptor antagonist and shRNA corresponding to prolactin-receptor mRNA were added into the cell culture mixture to investigate the relations between prolactin-receptor and human transferrin expression after bovine prolactin inducement. Levels of human transferrin in the supernatants were increased under the presentation of bovine prolactin (from 1,076 ± 115 to 1,886 ± 114 pg/ml). With the treatment of prolactin-receptor antagonist or shRNA, human transferrin in cells was declined (1,886 ± 113 vs. 1,233 ± 85 pg/ml or 1,114 ± 75 pg/ml, respectively). An inverse correlation was found between the dosage of prolactin-receptor antagonist and expression level of human transferrin. Real-time qRT-PCR analysis showed that the relative level of signal transducer and activator of transcription 5a (STAT5a) transcript in transfected cells correlated with expression levels of human transferrin in the supernatant of the same cells. Bovine prolactin thus improved the expression of human transferrin through such a possible mechanism that bovine prolactin activated STAT5a transcription expression via combined with prolactin-receptor and suggest a potential utility of the bovine prolactin for efficient expression of valuable pharmaceutical proteins in mammary glands of transgenic animals.


Assuntos
Caseínas/genética , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT5/metabolismo , Transferrina/biossíntese , Análise de Variância , Animais , Western Blotting , Bovinos , Linhagem Celular , Relação Dose-Resposta a Droga , Cabras , Humanos , Camundongos , Prolactina/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Prolactina/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT5/genética , Transfecção , Transferrina/genética , Transferrina/metabolismo
19.
World J Microbiol Biotechnol ; 28(3): 1295-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22805850

RESUMO

Streptomyces phage phiC31 integrase is widely used to mediate the integration of exogenous genes into host genomes for gene therapy and genomic modification, as it autonomously performs efficient, unidirectional, site-specific integration into pseudo attP sites of the host genome. Although pseudo attP sites are rarely found within exons, it is necessary to map their precise locations to avoid the risk of insertion mutagenesis. High-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) is a technique that has been developed to recover genomic sequences that flank insertion tags. We have found, however, that this technique is poorly efficient, as it amplifies many non-specific targets and frequently does not generate sufficient product for downstream analysis. Therefore, we have modified the hiTAIL-PCR procedure and re-designed the random primers. As a result, both the amount and specificity of the reaction product were enhanced for each integration site. Restriction analysis of known sequences within the integrated vector, which co-amplified with the flanking genomic sequences, validated 90% of these bands for sequencing. In contrast, only 30% of the bands produced by previous hiTAIL-PCR could be validated. Compared with the original hiTAIL-PCR, our improved hiTAIL-PCR procedure identified phiC31 integration sites more accurately and efficiently.


Assuntos
Bacteriófagos/enzimologia , Integrases/metabolismo , Reação em Cadeia da Polimerase/métodos , Recombinação Genética , Streptomyces/virologia , Primers do DNA/genética , Genética Microbiana/métodos , Genoma Bacteriano , Mutagênese Insercional , Sensibilidade e Especificidade
20.
DNA Cell Biol ; 31(7): 1335-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22489575

RESUMO

ΦC31 integrase, a site-specific recombinase, can catalyze integration of circular DNA bearing attB site into pseudo attP sites in mammalian genomes. However, the integration efficiency mediated by integrase is relatively low. Our study centered on the investigation of the impact of the position, orientation, and number of attBs in the donor plasmid on the efficiency of ΦC31 integrase system. Donor plasmids bearing various types of attBs (including forward and reverse directions, tandem, and intersperse) and reporter enhanced green fluorescent protein (EGFP) were constructed. The plasmids plus helper plasmid encoding integrase were co-transfected into HeLa cells. After G418 selection, the resistant cell colonies were counted for calculating chromosomal integration frequency. EGFP expression was detected by fluorescence-activated cell sorter and enzyme-linked immunosorbent assay analysis. The results showed that efficiency of integration mediated by integrase accounted for 70% ± 7.1% of total integration events in the transfected HeLa cells. Compared with a forward orientation of attB in donor plasmid, a reverse direction of attB or interspersed attBs showed 1.5- or 2.8-fold increase in integration efficiency, respectively, while tandem attBs in donor plasmids caused a decreased efficiency of integration. We conclude that the adjustment of attB sites in donor plasmids may be of value for gene therapy and routine genetic engineering by using ΦC31 integrase system.


Assuntos
Sítios de Ligação Microbiológicos/genética , Bacteriófagos/enzimologia , Integrases/metabolismo , Plasmídeos/genética , Transfecção/métodos , Bacteriófagos/genética , Sequência de Bases , Cromossomos Humanos Par 8/genética , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA