Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1249813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795295

RESUMO

Oilseed rape (Brassica napus L.) is highly susceptible to infection from the soilborne pathogen Plasmodiophora brassicae Woronin that causes clubroot disease and deleteriously affects production throughout the world. In this study, biological control resources were explored by isolating 237 strains of bacteria from fields of oilseed rape using the gradient dilution coating method. A strain with strong antagonistic ability was screened using a plate confrontation test and designated X216. It was identified as Streptomyces melanosporofaciens owing to its morphological characteristics and 16S rRNA gene sequence. This study also examined the lethality of strain X216 to the resting spores of P. brassicae, its influence on infection in root hairs, and its ability to control clubroot on oilseed rape. The corrected lethality rate on resting spores after strain X216 had been used for 14 days was 56.59% ± 1.97%, which was significantly higher than the use of 75% of the fungicides chlorothalonil WP and 20% Fluazinam SC. Significantly fewer root hairs were infected after this treatment. A pot test showed that X216 was 62.14% effective at controlling the disease, which was not significantly different from that of the fungicide 100 g L-1 cyazofamid SC diluted 1,000-fold but significantly higher than those of 75% chlorothalonil and 50% carbendazim WP. Strain X216 controlled 43.16% of the incidence of clubroot in the field, which could significantly reduce the disease index of oilseed rape clubroot. Therefore, strain X216 is promising to study for the biological control of oilseed rape clubroot.

2.
Front Microbiol ; 12: 684888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354684

RESUMO

Bacillus cereus YN917, obtained from a rice leaf with remarkable antifungal activity against Magnaporthe oryzae, was reported in our previous study. The present study deciphered the possible biocontrol properties. YN917 strain exhibits multiple plant growth-promoting and disease prevention traits, including production of indole-3-acetic acid (IAA), ACC deaminase, siderophores, protease, amylase, cellulase, and ß-1,3-glucanase, and harboring mineral phosphate decomposition activity. The effects of the strain YN917 on growth promotion and disease prevention were further evaluated under detached leaf and greenhouse conditions. The results revealed that B. cereus YN917 can promote seed germination and seedling plant growth. The growth status of rice plants was measured from the aspects of rice plumule, radicle lengths, plant height, stem width, root lengths, fresh weights, dry weights, and root activity when YN917 was used as inoculants. YN917 significantly reduced rice blast severity under detached leaf and greenhouse conditions. Genome analysis revealed the presence of gene clusters for biosynthesis of plant promotion and antifungal compounds, such as IAA, tryptophan, siderophores, and phenazine. In summary, YN917 can not only be used as biocontrol agents to minimize the use of chemical substances in rice blast control, but also can be developed as bio-fertilizers to promote the rice plant growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA