RESUMO
Atomic mutagenesis is the key to advance our understanding of RNA recognition and RNA catalysis. To this end, deazanucleosides are utilized to evaluate the participation of specific atoms in these processes. One of the remaining challenges is access to RNA-containing 1-deazaguanosine (c1G). Here, we present the synthesis of this nucleoside and its phosphoramidite, allowing first time access to c1G-modified RNA. Thermodynamic analyses revealed the base pairing parameters for c1G-modified RNA. Furthermore, by NMR spectroscopy, a c1G-triggered switch of Watson-Crick into Hoogsteen pairing in HIV-2 TAR RNA was identified. Additionally, using X-ray structure analysis, a guanine-phosphate backbone interaction affecting RNA fold stability was characterized, and finally, the critical impact of an active-site guanine in twister ribozyme on the phosphodiester cleavage was revealed. Taken together, our study lays the synthetic basis for c1G-modified RNA and demonstrates the power of the completed deazanucleoside toolbox for RNA atomic mutagenesis needed to achieve in-depth understanding of RNA recognition and catalysis.
Assuntos
RNA Catalítico , RNA , Pareamento de Bases , Guanina , Mutagênese , Conformação de Ácido Nucleico , RNA/química , RNA Catalítico/químicaRESUMO
Nucleobase deamination, such as A-to-I editing, represents an important posttranscriptional modification of RNA. When deamination affects guanosines, a xanthosine (X) containing RNA is generated. However, the biological significance and chemical consequences on RNA are poorly understood. We present a comprehensive study on the preparation and biophysical properties of X-modified RNA. Thermodynamic analyses revealed that base pairing strength is reduced to a level similar to that observed for a Gâ¢U replacement. Applying NMR spectroscopy and X-ray crystallography, we demonstrate that X can form distinct wobble geometries with uridine depending on the sequence context. In contrast, X pairing with cytidine occurs either through wobble geometry involving protonated C or in Watson-Crick-like arrangement. This indicates that the different pairing modes are of comparable stability separated by low energetic barriers for switching. Furthermore, we demonstrate that the flexible pairing properties directly affect the recognition of X-modified RNA by reverse transcription enzymes. Primer extension assays and PCR-based sequencing analysis reveal that X is preferentially read as G or A and that the ratio depends on the type of reverse transcriptase. Taken together, our results elucidate important properties of X-modified RNA paving the way for future studies on its biological significance.
Assuntos
Processamento Pós-Transcricional do RNA , RNA , Xantinas , Pareamento de Bases , Desaminação , Conformação de Ácido Nucleico , RNA/química , RNA/genética , Ribonucleosídeos , Xantinas/químicaRESUMO
In bacteria, trans-translation is the major quality control system for rescuing stalled ribosomes. It is mediated by tmRNA, a hybrid RNA with properties of both a tRNA and a mRNA, and the small protein SmpB. Because trans-translation is absent in eukaryotes but necessary for bacterial fitness or survival, it is a promising target for the development of novel antibiotics. To facilitate screening of chemical libraries, various reliable in vitro and in vivo systems have been created for assessing trans-translational activity. However, the aim of the current work was to permit the safe and easy in vitro evaluation of trans-translation from pathogenic bacteria, which are obviously the ones we should be targeting. Based on green fluorescent protein (GFP) reassembly during active trans-translation, we have created a cell-free assay adapted to the rapid evaluation of trans-translation in ESKAPE bacteria, with 24 different possible combinations. It can be used for easy high-throughput screening of chemical compounds as well as for exploring the mechanism of trans-translation in these pathogens.
Assuntos
Bactérias/patogenicidade , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Técnicas In Vitro , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genéticaRESUMO
Deazapurine nucleosides such as 3-deazaadenosine (c3A) are crucial for atomic mutagenesis studies of functional RNAs. They were the key for our current mechanistic understanding of ribosomal peptide bond formation and of phosphodiester cleavage in recently discovered small ribozymes, such as twister and pistol RNAs. Here, we present a comprehensive study on the impact of c3A and the thus far underinvestigated 3-deazaguanosine (c3G) on RNA properties. We found that these nucleosides can decrease thermodynamic stability of base pairing to a significant extent. The effects are much more pronounced for 3-deazapurine nucleosides compared to their constitutional isomers of 7-deazapurine nucleosides (c7G, c7A). We furthermore investigated base pair opening dynamics by solution NMR spectroscopy and revealed significantly enhanced imino proton exchange rates. Additionally, we solved the X-ray structure of a c3A-modified RNA and visualized the hydration pattern of the minor groove. Importantly, the characteristic water molecule that is hydrogen-bonded to the purine N3 atom and always observed in a natural double helix is lacking in the 3-deazapurine-modified counterpart. Both, the findings by NMR and X-ray crystallographic methods hence provide a rationale for the reduced pairing strength. Taken together, our comparative study is a first major step towards a comprehensive understanding of this important class of nucleoside modifications.
Assuntos
Estabilidade de RNA , RNA/química , Tubercidina/química , Pareamento de Bases , Cristalografia por Raios X , Mutagênese , Purinas/química , RNA/genética , TermodinâmicaRESUMO
New RNA modifications are needed to advance our toolbox for targeted manipulation of RNA. In particular, the development of high-performance reporter groups facilitating spectroscopic analysis of RNA structure and dynamics, and of RNA-ligand interactions has attracted considerable interest. To this end, fluorine labeling in conjunction with 19F-NMR spectroscopy has emerged as a powerful strategy. Appropriate probes for RNA previously focused on single fluorine atoms attached to the 5-position of pyrimidine nucleobases or at the ribose 2'-position. To increase NMR sensitivity, trifluoromethyl labeling approaches have been developed, with the ribose 2'-SCF3 modification being the most prominent one. A major drawback of the 2'-SCF3 group, however, is its strong impact on RNA base pairing stability. Interestingly, RNA containing the structurally related 2'-OCF3 modification has not yet been reported. Therefore, we set out to overcome the synthetic challenges toward 2'-OCF3 labeled RNA and to investigate the impact of this modification. We present the syntheses of 2'-OCF3 adenosine and cytidine phosphoramidites and their incorporation into oligoribonucleotides by solid-phase synthesis. Importantly, it turns out that the 2'-OCF3 group has only a slight destabilizing effect when located in double helical regions which is consistent with the preferential C3'-endo conformation of the 2'-OCF3 ribose as reflected in the 3 J (H1'-H2') coupling constants. Furthermore, we demonstrate the exceptionally high sensitivity of the new label in 19F-NMR analysis of RNA structure equilibria and of RNA-small molecule interactions. The study is complemented by a crystal structure at 0.9 Å resolution of a 27 nt hairpin RNA containing a single 2'-OCF3 group that well integrates into the minor groove. The new label carries high potential to outcompete currently applied fluorine labels for nucleic acid NMR spectroscopy because of its significantly advanced performance.