Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(1): e1-e18, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031839

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction is proposed to be caused by endothelial dysfunction in cardiac microvessels. Our goal was to identify molecular and cellular mechanisms underlying the development of cardiac microvessel disease and diastolic dysfunction in the setting of type 2 diabetes. METHODS: We used Leprdb/db (leptin receptor-deficient) female mice as a model of type 2 diabetes and heart failure with preserved ejection fraction and identified Hhipl1 (hedgehog interacting protein-like 1), which encodes for a decoy receptor for HH (hedgehog) ligands as a gene upregulated in the cardiac vascular fraction of diseased mice. RESULTS: We then used Dhh (desert HH)-deficient mice to investigate the functional consequences of impaired HH signaling in the adult heart. We found that Dhh-deficient mice displayed increased end-diastolic pressure while left ventricular ejection fraction was comparable to that of control mice. This phenotype was associated with a reduced exercise tolerance in the treadmill test, suggesting that Dhh-deficient mice do present heart failure. At molecular and cellular levels, impaired cardiac relaxation in DhhECKO mice was associated with a significantly decreased PLN (phospholamban) phosphorylation on Thr17 (threonine 17) and an alteration of sarcomeric shortening ex vivo. Besides, as expected, Dhh-deficient mice exhibited phenotypic changes in their cardiac microvessels including a prominent prothrombotic phenotype. Importantly, aspirin therapy prevented the occurrence of both diastolic dysfunction and exercise intolerance in these mice. To confirm the critical role of thrombosis in the pathophysiology of diastolic dysfunction, we verified Leprdb/db also displays increased cardiac microvessel thrombosis. Moreover, consistently, with Dhh-deficient mice, we found that aspirin treatment decreased end-diastolic pressure and improved exercise tolerance in Leprdb/db mice. CONCLUSIONS: Altogether, these results demonstrate that microvessel thrombosis may participate in the pathophysiology of heart failure with preserved ejection fraction.


Assuntos
Cardiomiopatias , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Trombose , Disfunção Ventricular Esquerda , Animais , Feminino , Camundongos , Função Ventricular Esquerda , Volume Sistólico , Diabetes Mellitus Tipo 2/complicações , Disfunção Ventricular Esquerda/genética , Proteínas Hedgehog , Microvasos , Trombose/complicações , Aspirina
2.
Nat Commun ; 14(1): 3766, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355632

RESUMO

Successful muscle regeneration relies on the interplay of multiple cell populations. However, the signals required for this coordinated intercellular crosstalk remain largely unknown. Here, we describe how the Hedgehog (Hh) signaling pathway controls the fate of fibro/adipogenic progenitors (FAPs), the cellular origin of intramuscular fat (IMAT) and fibrotic scar tissue. Using conditional mutagenesis and pharmacological Hh modulators in vivo and in vitro, we identify DHH as the key ligand that acts as a potent adipogenic brake by preventing the adipogenic differentiation of FAPs. Hh signaling also impacts muscle regeneration, albeit indirectly through induction of myogenic factors in FAPs. Our results also indicate that ectopic and sustained Hh activation forces FAPs to adopt a fibrogenic fate resulting in widespread fibrosis. In this work, we reveal crucial post-developmental functions of Hh signaling in balancing tissue regeneration and fatty fibrosis. Moreover, they provide the exciting possibility that mis-regulation of the Hh pathway with age and disease could be a major driver of pathological IMAT formation.


Assuntos
Adipogenia , Proteínas Hedgehog , Adipogenia/genética , Diferenciação Celular/fisiologia , Fibrose , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ligantes , Músculo Esquelético/metabolismo , Transdução de Sinais , Animais
3.
J Am Heart Assoc ; 12(13): e029279, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37345826

RESUMO

Background Although the critical role of pericytes in maintaining vascular integrity has been extensively demonstrated in the brain and the retina, little is known about their role in the heart. We aim to investigate structural and functional consequences of partial pericyte depletion (≈60%) in the heart of adult mice. Methods and Results To deplete pericytes in adult mice, we used platelet-derived growth factor receptor ß-Cre/ERT2; RosaDTA mice and compared their phenotype with that of control mice (RosaDTA) chosen among their littermates. Cardiac function was assessed via echocardiography and left ventricular catheterization 1 month after the first tamoxifen injection. We found mice depleted with pericytes had a reduced left ventricular ejection fraction and an increased end-diastolic pressure, demonstrating both systolic and diastolic dysfunction. Consistently, mice depleted with pericytes presented a decreased left ventricular contractility and an increased left ventricular relaxation time (dP/dtmin). At the tissue level, mice depleted of pericytes displayed increased coronary endothelium leakage and activation, which was associated with increased CD45+ cell infiltration. Consistent with systolic dysfunction, pericyte depletion was associated with an increased expression of myosin heavy chain 7 and decreased expression of ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 and connexin 43. More important, coculture assays demonstrated, for the first time, that the decreased expression of connexin 43 is likely attributable to a direct effect of pericytes on cardiomyocytes. Besides, this study reveals that cardiac pericytes may undergo strong remodeling on injury. Conclusions Cardiac pericyte depletion induces both systolic and diastolic dysfunction, suggesting that pericyte dysfunction may contribute to the occurrence of cardiac diseases.


Assuntos
Cardiomiopatias , Conexina 43 , Camundongos , Animais , Conexina 43/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Cardiomiopatias/metabolismo , Coração , Pericitos
4.
Circ Res ; 132(1): 34-48, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36448444

RESUMO

BACKGROUND: Lower-limb peripheral artery disease is one of the major complications of diabetes. Peripheral artery disease is associated with poor limb and cardiovascular prognoses, along with a dramatic decrease in life expectancy. Despite major medical advances in the treatment of diabetes, a substantial therapeutic gap remains in the peripheral artery disease population. Praliciguat is an orally available sGC (soluble guanylate cyclase) stimulator that has been reported both preclinically and in early stage clinical trials to have favorable effects in metabolic and hemodynamic outcomes, suggesting that it may have a potential beneficial effect in peripheral artery disease. METHODS: We evaluated the effect of praliciguat on hind limb ischemia recovery in a mouse model of type 2 diabetes. Hind limb ischemia was induced in leptin receptor-deficient (Leprdb/db) mice by ligation and excision of the left femoral artery. Praliciguat (10 mg/kg/day) was administered in the diet starting 3 days before surgery. RESULTS: Twenty-eight days after surgery, ischemic foot perfusion and function parameters were better in praliciguat-treated mice than in vehicle controls. Improved ischemic foot perfusion was not associated with either improved traditional cardiovascular risk factors (ie, weight, glycemia) or increased angiogenesis. However, treatment with praliciguat significantly increased arteriole diameter, decreased ICAM1 (intercellular adhesion molecule 1) expression, and prevented the accumulation of oxidative proangiogenic and proinflammatory muscle fibers. While investigating the mechanism underlying the beneficial effects of praliciguat therapy, we found that praliciguat significantly downregulated Myh2 and Cxcl12 mRNA expression in cultured myoblasts and that conditioned medium form praliciguat-treated myoblast decreased ICAM1 mRNA expression in endothelial cells. These results suggest that praliciguat therapy may decrease ICAM1 expression in endothelial cells by downregulating Cxcl12 in myocytes. CONCLUSIONS: Our results demonstrated that praliciguat promotes blood flow recovery in the ischemic muscle of mice with type 2 diabetes, at least in part by increasing arteriole diameter and by downregulating ICAM1 expression.


Assuntos
Diabetes Mellitus Tipo 2 , Doença Arterial Periférica , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptores para Leptina/genética , Células Endoteliais/metabolismo , Isquemia/metabolismo , Modelos Animais de Doenças , Reperfusão , Doença Arterial Periférica/complicações , Membro Posterior/irrigação sanguínea , Neovascularização Fisiológica , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL
5.
Front Physiol ; 13: 906272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874523

RESUMO

Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.

6.
Arterioscler Thromb Vasc Biol ; 42(6): 745-763, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510550

RESUMO

BACKGROUND: While endothelial dysfunction is suggested to contribute to heart failure with preserved ejection fraction pathophysiology, understanding the importance of the endothelium alone, in the pathogenesis of diastolic abnormalities has not yet been fully elucidated. Here, we investigated the consequences of specific endothelial dysfunction on cardiac function, independently of any comorbidity or risk factor (diabetes or obesity) and their potential effect on cardiomyocyte. METHODS: The ubiquitine ligase Pdzrn3, expressed in endothelial cells (ECs), was shown to destabilize tight junction. A genetic mouse model in which Pdzrn3 is overexpressed in EC (iEC-Pdzrn3) in adults was developed. RESULTS: EC-specific Pdzrn3 expression increased cardiac leakage of IgG and fibrinogen blood-born molecules. The induced edema demonstrated features of diastolic dysfunction, with increased end-diastolic pressure, alteration of dP/dt min, increased natriuretic peptides, in addition to limited exercise capacity, without major signs of cardiac fibrosis and inflammation. Electron microscopic images showed edema with disrupted EC-cardiomyocyte interactions. RNA sequencing analysis of gene expression in cardiac EC demonstrated a decrease in genes coding for endothelial extracellular matrix proteins, which could be related to the fragile blood vessel phenotype. Irregularly shaped capillaries with hemorrhages were found in heart sections of iEC-Pdzrn3 mice. We also found that a high-fat diet was not sufficient to provoke diastolic dysfunction; high-fat diet aggravated cardiac inflammation, associated with an altered cardiac metabolic signature in EC-Pdzrn3 mice, reminiscent of heart failure with preserved ejection fraction features. CONCLUSIONS: An increase of endothelial permeability is responsible for mediating diastolic dysfunction pathophysiology and for aggravating detrimental effects of a high-fat diet on cardiac inflammation and metabolism.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Animais , Permeabilidade Capilar , Células Endoteliais/metabolismo , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Volume Sistólico/fisiologia , Ubiquitina-Proteína Ligases
8.
Cardiovasc Res ; 117(12): 2489-2501, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33063110

RESUMO

AIMS: The therapeutic potential of Hedgehog (Hh) signalling agonists for vascular diseases is of growing interest. However, molecular and cellular mechanisms underlying the role of the Hh signalling in vascular biology remain poorly understood. The purpose of the present article is to clarify some conflicting literature data. METHODS AND RESULTS: With this goal, we have demonstrated that, unexpectedly, ectopically administered N-terminal Sonic Hh (N-Shh) and endogenous endothelial-derived Desert Hh (Dhh) induce opposite effects in endothelial cells (ECs). Notably, endothelial Dhh acts under its full-length soluble form (FL-Dhh) and activates Smoothened in ECs, while N-Shh inhibits it. At molecular level, N-Shh prevents FL-Dhh binding to Patched-1 (Ptch1) demonstrating that N-Shh acts as competitive antagonist to FL-Dhh. Besides, we found that even though FL-Hh ligands and N-Hh ligands all bind Ptch1, they induce distinct Ptch1 localization. Finally, we confirmed that in a pathophysiological setting, i.e. brain inflammation, astrocyte-derived N-Shh acts as a FL-Dhh antagonist. CONCLUSION: The present study highlights for the first time that FL-Dhh and N-Hh ligands have antagonistic properties especially in ECs.


Assuntos
Astrócitos/metabolismo , Permeabilidade Capilar , Córtex Cerebral/irrigação sanguínea , Neovascularização da Córnea/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Células Endoteliais/metabolismo , Proteínas Hedgehog/metabolismo , Neovascularização Patológica , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Neovascularização da Córnea/genética , Neovascularização da Córnea/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Proteínas Hedgehog/administração & dosagem , Proteínas Hedgehog/genética , Ligantes , Masculino , Camundongos Knockout , Receptor Patched-1/metabolismo , Ligação Proteica , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
9.
PLoS Biol ; 18(11): e3000946, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253145

RESUMO

Inflammation of the central nervous system (CNS) induces endothelial blood-brain barrier (BBB) opening as well as the formation of a tight junction barrier between reactive astrocytes at the Glia Limitans. We hypothesized that the CNS parenchyma may acquire protection from the reactive astrocytic Glia Limitans not only during neuroinflammation but also when BBB integrity is compromised in the resting state. Previous studies found that astrocyte-derived Sonic hedgehog (SHH) stabilizes the BBB during CNS inflammatory disease, while endothelial-derived desert hedgehog (DHH) is expressed at the BBB under resting conditions. Here, we investigated the effects of endothelial Dhh on the integrity of the BBB and Glia Limitans. We first characterized DHH expression within endothelial cells at the BBB, then demonstrated that DHH is down-regulated during experimental autoimmune encephalomyelitis (EAE). Using a mouse model in which endothelial Dhh is inducibly deleted, we found that endothelial Dhh both opens the BBB via the modulation of forkhead box O1 (FoxO1) transcriptional activity and induces a tight junctional barrier at the Glia Limitans. We confirmed the relevance of this glial barrier system in human multiple sclerosis active lesions. These results provide evidence for the novel concept of "chronic neuroinflammatory tolerance" in which BBB opening in the resting state is sufficient to stimulate a protective barrier at the Glia Limitans that limits the severity of subsequent neuroinflammatory disease. In summary, genetic disruption of the BBB generates endothelial signals that drive the formation under resting conditions of a secondary barrier at the Glia Limitans with protective effects against subsequent CNS inflammation. The concept of a reciprocally regulated CNS double barrier system has implications for treatment strategies in both the acute and chronic phases of multiple sclerosis pathophysiology.


Assuntos
Barreira Hematoencefálica/fisiologia , Barreira Hematoencefálica/fisiopatologia , Junções Aderentes/patologia , Junções Aderentes/fisiologia , Animais , Antígenos CD/genética , Antígenos CD/fisiologia , Astrócitos/patologia , Astrócitos/fisiologia , Caderinas/genética , Caderinas/fisiologia , Permeabilidade Capilar/genética , Permeabilidade Capilar/fisiologia , Claudina-5/genética , Claudina-5/fisiologia , Regulação para Baixo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Feminino , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Neuroglia/patologia , Neuroglia/fisiologia , Junções Íntimas/patologia , Junções Íntimas/fisiologia
10.
Arterioscler Thromb Vasc Biol ; 40(12): e336-e349, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33028094

RESUMO

OBJECTIVE: Evidences accumulated within the past decades identified hedgehog signaling as a new regulator of endothelium integrity. More specifically, we recently identified Dhh (desert hedgehog) as a downstream effector of Klf2 (Kruppel-like factor 2) in endothelial cells (ECs). The purpose of this study is to investigate whether hedgehog coreceptors Gas1 (growth arrest-specific 1) and Cdon (cell adhesion molecule-related/downregulated by oncogenes) may be used as therapeutic targets to modulate Dhh signaling in ECs. Approach and Results: We demonstrated that both Gas1 and Cdon are expressed in adult ECs and relied on either siRNAs- or EC-specific conditional knockout mice to investigate their role. We found that Gas1 deficiency mainly phenocopies Dhh deficiency especially by inducing VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) overexpression while Cdon deficiency has opposite effects by promoting endothelial junction integrity. At a molecular level, Cdon prevents Dhh binding to Ptch1 (patched-1) and thus acts as a decoy receptor for Dhh, while Gas1 promotes Dhh binding to Smo (smoothened) and as a result potentiates Dhh effects. Since Cdon is upregulated in ECs treated by inflammatory cytokines, including TNF (tumor necrosis factor)-α and Il (interleukin)-1ß, we then tested whether Cdon inhibition would promote endothelium integrity in acute inflammatory conditions and found that both fibrinogen and IgG extravasation were decreased in association with an increased Cdh5 (cadherin-5) expression in the brain cortex of EC-specific Cdon knockout mice administered locally with Il-1ß. CONCLUSIONS: Altogether, these results demonstrate that Gas1 is a positive regulator of Dhh in ECs while Cdon is a negative regulator. Interestingly, Cdon blocking molecules may then be used to promote endothelium integrity, at least in inflammatory conditions.


Assuntos
Barreira Hematoencefálica/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neovascularização da Córnea/metabolismo , Células Endoteliais/metabolismo , Endotélio Corneano/metabolismo , Proteínas Hedgehog/metabolismo , Inflamação/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Barreira Hematoencefálica/patologia , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Células Cultivadas , Neovascularização da Córnea/genética , Neovascularização da Córnea/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotélio Corneano/patologia , Feminino , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Hedgehog/genética , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Patched-1/metabolismo , Transdução de Sinais , Receptor Smoothened/metabolismo
11.
Circ Res ; 127(12): 1473-1487, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33012251

RESUMO

RATIONALE: Tamoxifen prevents the recurrence of breast cancer and is also beneficial against bone demineralization and arterial diseases. It acts as an ER (estrogen receptor) α antagonist in ER-positive breast cancers, whereas it mimics the protective action of 17ß-estradiol in other tissues such as arteries. However, the mechanisms of these tissue-specific actions remain unclear. OBJECTIVE: Here, we tested whether tamoxifen is able to accelerate endothelial healing and analyzed the underlying mechanisms. METHODS AND RESULTS: Using 3 complementary mouse models of carotid artery injury, we demonstrated that both tamoxifen and estradiol accelerated endothelial healing, but only tamoxifen required the presence of the underlying medial smooth muscle cells. Chronic treatment with 17ß-estradiol and tamoxifen elicited differential gene expression profiles in the carotid artery. The use of transgenic mouse models targeting either whole ERα in a cell-specific manner or ERα subfunctions (membrane/extranuclear versus genomic/transcriptional) demonstrated that 17ß-estradiol-induced acceleration of endothelial healing is mediated by membrane ERα in endothelial cells, while the effect of tamoxifen is mediated by the nuclear actions of ERα in smooth muscle cells. CONCLUSIONS: Whereas tamoxifen acts as an antiestrogen and ERα antagonist in breast cancer but also on the membrane ERα of endothelial cells, it accelerates endothelial healing through activation of nuclear ERα in smooth muscle cells, inviting to revisit the mechanisms of action of selective modulation of ERα.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Receptor alfa de Estrogênio/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Fatores de Tempo
12.
Dev Biol ; 463(1): 26-38, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32151560

RESUMO

Non-syndromic mitral valve prolapse (MVP) is the most common heart valve disease affecting 2.4% of the population. Recent studies have identified genetic defects in primary cilia as causative to MVP, although the mechanism of their action is currently unknown. Using a series of gene inactivation approaches, we define a paracrine mechanism by which endocardially-expressed Desert Hedgehog (DHH) activates primary cilia signaling on neighboring valve interstitial cells. High-resolution imaging and functional assays show that DHH de-represses smoothened at the primary cilia, resulting in kinase activation of RAC1 through the RAC1-GEF, TIAM1. Activation of this non-canonical hedgehog pathway stimulates α-smooth actin organization and ECM remodeling. Genetic or pharmacological perturbation of this pathway results in enlarged valves that progress to a myxomatous phenotype, similar to valves seen in MVP patients. These data identify a potential molecular origin for MVP as well as establish a paracrine DHH-primary cilium cross-talk mechanism that is likely applicable across developmental tissue types.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Valva Mitral/embriologia , Actinas/metabolismo , Animais , Matriz Extracelular/metabolismo , Doenças das Valvas Cardíacas , Proteínas Hedgehog/fisiologia , Camundongos , Prolapso da Valva Mitral/genética , Prolapso da Valva Mitral/metabolismo , Músculo Liso/metabolismo , Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Neuropeptídeos/metabolismo , Fenótipo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Int J Mol Sci ; 20(12)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238510

RESUMO

The role of Hedgehog (Hh) signaling in vascular biology has first been highlighted in embryos by Pepicelli et al. in 1998 and Rowitch et al. in 1999. Since then, the proangiogenic role of the Hh ligands has been confirmed in adults, especially under pathologic conditions. More recently, the Hh signaling has been proposed to improve vascular integrity especially at the blood-brain barrier (BBB). However, molecular and cellular mechanisms underlying the role of the Hh signaling in vascular biology remain poorly understood and conflicting results have been reported. As a matter of fact, in several settings, it is currently not clear whether Hh ligands promote vessel integrity and quiescence or destabilize vessels to promote angiogenesis. The present review relates the current knowledge regarding the role of the Hh signaling in vasculature development, maturation and maintenance, discusses the underlying proposed mechanisms and highlights controversial data which may serve as a guideline for future research. Most importantly, fully understanding such mechanisms is critical for the development of safe and efficient therapies to target the Hh signaling in both cancer and cardiovascular/cerebrovascular diseases.


Assuntos
Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Proteínas Hedgehog/metabolismo , Organogênese , Transdução de Sinais , Animais , Barreira Hematoencefálica/metabolismo , Diferenciação Celular , Humanos , Ligantes , Neovascularização Fisiológica
15.
J Thromb Haemost ; 17(5): 827-840, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30801958

RESUMO

Essentials To reliably study the respective roles of blood and endothelial cells in hemostasis, mouse models with a strong and specific endothelial expression of the Cre recombinase are needed. Using mT/mG reporter mice and conditional JAK2V617F/WT mice, we compared Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 with well-characterized Tie2-Cre mice. Comparison of recombination efficiency and specificity towards blood lineage reveals major differences between endothelial transgenic mice. Cre-mediated recombination occurs in a small number of adult hematopoietic stem cells in Pdgfb-iCreERT2;JAK2V617F/WT transgenic mice. SUMMARY: Background The vessel wall, and particularly blood endothelial cells (BECs), are intensively studied to better understand hemostasis and target thrombosis. To understand the specific role of BECs, it is important to have mouse models that allow specific and homogeneous expression of genes of interest in all BEC beds without concomitant expression in blood cells. Inducible Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 transgenic mice are widely used for BEC targeting. However, issues remain in terms of recombination efficiency and specificity regarding hematopoietic cells. Objectives To determine which mouse model to choose when strong expression of a transgene is required in adult BECs from various organs, without concomitant expression in hematopoietic cells. Methods Using mT/mG reporter mice to measure recombination efficiency and conditional JAK2V617F/WT mice to assess specificity regarding hematopoietic cells, we compared Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 with well-characterized Tie2-Cre mice. Results Adult Cdh5(PAC)-CreERT2 mice are endothelial specific but require a dose of 10 mg of tamoxifen to allow constant Cre expression. Pdgfb-iCreERT2 mice injected with 5 mg of tamoxifen are appropriate for most endothelial research fields except liver studies, as hepatic sinusoid ECs are not recombined. Surprisingly, 2 months after induction of Cre-mediated recombination, all Pdgfb-iCreERT2;JAK2V617F/WT mice developed a myeloproliferative neoplasm that is related to the presence of JAK2V617F in hematopoietic cells, showing for the first time that Cre-mediated recombination occurs in a small number of adult hematopoietic stem cells in Pdgfb-iCreERT2 transgenic mice. Conclusion This study provides useful guidelines for choosing the best mouse line to study the role of BECs in hemostasis and thrombosis.


Assuntos
Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Linfocinas/genética , Linfocinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Alelos , Animais , Encéfalo/metabolismo , Hemostasia , Integrases/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Reação em Cadeia da Polimerase , Retina/metabolismo , Tamoxifeno/farmacologia , Trombose/metabolismo
16.
Haematologica ; 104(1): 70-81, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171023

RESUMO

Thrombosis is the main cause of morbidity and mortality in patients with JAK2V617F myeloproliferative neoplasms. Recent studies have reported the presence of JAK2V617F in endothelial cells of some patients with myeloproliferative neoplasms. We investigated the role of endothelial cells that express JAK2V617F in thrombus formation using an in vitro model of human endothelial cells overexpressing JAK2V617F and an in vivo model of mice with endothelial-specific JAK2V617F expression. Interestingly, these mice displayed a higher propensity for thrombus. When deciphering the mechanisms by which JAK2V617F-expressing endothelial cells promote thrombosis, we observed that they have a pro-adhesive phenotype associated with increased endothelial P-selectin exposure, secondary to degranulation of Weibel-Palade bodies. We demonstrated that P-selectin blockade was sufficient to reduce the increased propensity of thrombosis. Moreover, treatment with hydroxyurea also reduced thrombosis and decreased the pathological interaction between leukocytes and JAK2V617F-expressing endothelial cells through direct reduction of endothelial P-selectin expression. Taken together, our data provide evidence that JAK2V617F-expressing endothelial cells promote thrombosis through induction of endothelial P-selectin expression, which can be reversed by hydroxyurea. Our findings increase our understanding of thrombosis in patients with myeloproliferative neoplasms, at least those with JAK2V617F-positive endothelial cells, and highlight a new role for hydroxyurea. This novel finding provides the proof of concept that an acquired genetic mutation can affect the pro-thrombotic nature of endothelial cells, suggesting that other mutations in endothelial cells could be causal in thrombotic disorders of unknown cause, which account for 50% of recurrent venous thromboses.


Assuntos
Células Endoteliais/metabolismo , Janus Quinase 2/biossíntese , Selectina-P/biossíntese , Trombose/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxiureia/farmacologia , Janus Quinase 2/genética , Camundongos , Camundongos Transgênicos , Selectina-P/genética , Trombose/tratamento farmacológico , Trombose/genética , Trombose/patologia
17.
Circ Res ; 123(9): 1053-1065, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30355159

RESUMO

RATIONALE: Klf (kruppel-like factor) 2 is critical to establish and maintain endothelial integrity. OBJECTIVE: Therefore, determining upstream and downstream mediators of Klf2 would lead to alternative therapeutic targets in cardiovascular disease management. METHODS AND RESULTS: Here we identify Dhh (desert hedgehog) as a downstream effector of Klf2, whose expression in endothelial cells (ECs) is upregulated by shear stress and decreased by inflammatory cytokines. Consequently, we show that Dhh knockdown in ECs promotes endothelial permeability and EC activation and that Dhh agonist prevents TNF-α (tumor necrosis factor alpha) or glucose-induced EC dysfunction. Moreover, we demonstrate that human critical limb ischemia, a pathological condition linked to diabetes mellitus and inflammation, is associated to major EC dysfunction. By recreating a complex model of critical limb ischemia in diabetic mice, we found that Dhh-signaling agonist significantly improved EC function without promoting angiogenesis, which subsequently improved muscle perfusion. CONCLUSION: Restoring EC function leads to significant critical limb ischemia recovery. Dhh appears to be a promising target, downstream of Klf2, to prevent the endothelial dysfunction involved in ischemic vascular diseases.


Assuntos
Células Endoteliais/metabolismo , Proteínas Hedgehog/metabolismo , Isquemia/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Animais , Comunicação Autócrina , Permeabilidade Capilar , Células Cultivadas , Estado Terminal , Cicloexilaminas/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Isquemia/tratamento farmacológico , Isquemia/genética , Isquemia/fisiopatologia , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Fluxo Sanguíneo Regional , Transdução de Sinais , Estresse Mecânico , Tiofenos/farmacologia
18.
Physiol Rep ; 6(12): e13736, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29932507

RESUMO

This study combines two well-known vascular research models, hyperoxia and hind limb ischemia, aiming to better characterize capacities of the hyperoxia challenge. We studied two groups of C57/BL6 male mice, a control (C) and a hind limb ischemia (HLI) group. Perfusion from both limbs was recorded in all animals by laser Doppler techniques under an oxygen (O2 ) saturated atmosphere, once for control and, during 35 days for the HLI group. We used a third set of normoxic animals for HLI morphometric control. The expected variability of responses was higher for the younger animals. In the HLI group, capillary density normalized at Day 21 as expected, but not microcirculatory physiology. In the operated limb, perfusion decreased dramatically following surgery (Day 4), as a slight reduction in the non-operated limb was also noted. Consistently, the response to hyperoxia was an increased perfusion in the ischemic limb and decreased perfusion in the contralateral limb. Only at Day 35, both limbs exhibited similar flows, although noticeably lower than Day 0. These observations help to understand some of the functional variability attributed to the hyperoxia model, by showing (i) differences in the circulation of the limb pairs to readjust a new perfusion set-point even after ischemia, an original finding implying that (ii) data from both limbs should be recorded when performing distal measurements in vivo. Our data demonstrate that the new vessels following HLI are not functionally normal, and this also affects the non-operated limb. These findings confirm the discriminative capacities of the hyperoxia challenge and suggest its potential utility to study other pathologies with vascular impact.


Assuntos
Membro Posterior/irrigação sanguínea , Hiperóxia/fisiopatologia , Isquemia/fisiopatologia , Neovascularização Fisiológica/fisiologia , Animais , Modelos Animais de Doenças , Fluxometria por Laser-Doppler , Masculino , Camundongos Endogâmicos C57BL , Microcirculação/fisiologia , Regeneração/fisiologia
19.
Cardiovasc Res ; 114(5): 759-770, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365079

RESUMO

Aims: Hedgehog (Hh) signalling has been shown to be re-activated in ischaemic tissues and participate in ischaemia-induced angiogenesis. Sonic Hedgehog (Shh) is upregulated by more than 80-fold in the ischaemic skeletal muscle, however its specific role in ischaemia-induced angiogenesis has not yet been fully investigated. The purpose of the present study was to investigate the role of endogenous Shh in ischaemia-induced angiogenesis. Methods and results: To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in re-generating muscle of Shh deficient mice 5 days after hind limb ischaemia was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischaemia-induced myogenesis. Additionally, we observed a significant increase in macrophage infiltration in the ischaemic muscle of Shh deficient mice. Our data indicate that this was due to an increase in chemokine expression by myoblasts in the setting of impaired Hh signalling, using tissue specific Smoothened conditional KO mice. The increased macrophage infiltration in mice deficient for Hh signalling in myocytes was associated with increased VEGFA expression and a transiently increased angiogenesis, demonstrating that Shh limits inflammation and angiogenesis indirectly by signalling to myocytes. Conclusion: Although ectopic administration of Shh has previously been shown to promote ischaemia-induced angiogenesis, the present study reveals that endogenous Shh does not promote ischaemia-induced angiogenesis. On the contrary, the absence of Shh leads to aberrant ischaemic tissue inflammation and a transiently increased angiogenesis.


Assuntos
Proteínas Hedgehog/metabolismo , Inflamação/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Neovascularização Fisiológica , Animais , Velocidade do Fluxo Sanguíneo , Quimiocinas/metabolismo , Quimiotaxia , Modelos Animais de Doenças , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Membro Posterior , Inflamação/genética , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Isquemia/genética , Isquemia/fisiopatologia , Macrófagos/metabolismo , Camundongos Knockout , Mioblastos Esqueléticos/metabolismo , Fluxo Sanguíneo Regional , Transdução de Sinais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Cardiovasc Res ; 109(2): 217-27, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26645982

RESUMO

AIMS: Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function. METHODS AND RESULTS: By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy. CONCLUSION: The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Endotélio/fisiopatologia , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Animais , Capilares/metabolismo , Regulação para Baixo , Proteínas Hedgehog/deficiência , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Receptor Smoothened/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA