Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Drug Discov Today ; 28(2): 103441, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36372329

RESUMO

Allosteric modulators are of prime interest in drug discovery. These drugs regulate the binding and function of endogenous ligands, with some advantages over orthosteric ligands. A typical pharmacological parameter in allosteric modulation is binding cooperativity. This property can yield unexpected but illuminating results when decomposed into its kinetic parameters. Using two reference models (the allosteric ternary complex receptor model and a heterodimer receptor model), a relationship has been derived for the cooperativity rate constant parameters. This relationship allows many combinations of the cooperativity kinetic parameters for a single binding cooperativity value obtained under equilibrium conditions. This assessment may help understand striking experimental results involving allosteric modulation and suggest further investigations in the field.


Assuntos
Ligantes , Regulação Alostérica , Sítio Alostérico
2.
ACS Omega ; 7(42): 37873-37884, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312415

RESUMO

Cannabinoid receptor 1 (CB1) is a promising drug target involved in many physiological processes. Using atomistic molecular dynamics (MD) simulations, we examined the structural effect of F237L mutation on CB1, a mutation that has qualitatively similar effects to allosteric ligand ORG27569 binding. This mutation showed a global effect on CB1 conformations. Among the observed effects, TM6 outward movement and the conformational change of the NPxxY motif upon receptor activation by CB1 agonist CP55940 were hindered compared to wt CB1. Within the orthosteric binding site, CP55940 interactions with CB1 were altered. Our results revealed that allosteric perturbations introduced by the mutation had a global impact on receptor conformations, suggesting that the mutation site is a key region for allosteric modulation in CB1.

3.
Membranes (Basel) ; 12(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35877905

RESUMO

ATP2, a putative type 4 P-type ATPase, is a phosphatidylinositol-4-phosphate (PI4P)-regulated phospholipid transporter with an interesting potential as an antimalarial drug target due to its conservation across Plasmodium species and its essential role in the life cycle of Plasmodium falciparum. Despite its importance, the exact mechanism of its action and regulation is still not fully understood. In this study we used coarse-grained molecular dynamics (CG-MD) to elucidate the lipid-protein interactions between a heterogeneous lipid membrane containing phosphatidylinositol and Plasmodium chabaudi ATP2 (PcATP2), an ortholog of P. falciparum ATP2. Our study reveals structural information of the lipid fingerprint of ATP2, and provides structural information on the potential phosphatidylinositol allosteric binding site. Moreover, we identified a set of evolutionary conserved residues that may play a key role in the binding and stabilization of lipids in the binding pocket.

4.
Elife ; 102021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477105

RESUMO

There is increasing support for water molecules playing a role in signal propagation through G protein-coupled receptors (GPCRs). However, exploration of the hydration features of GPCRs is still in its infancy. Here, we combined site-specific labeling with unnatural amino acids to molecular dynamics to delineate how local hydration of the ghrelin receptor growth hormone secretagogue receptor (GHSR) is rearranged upon activation. We found that GHSR is characterized by a specific hydration pattern that is selectively remodeled by pharmacologically distinct ligands and by the lipid environment. This process is directly related to the concerted movements of the transmembrane domains of the receptor. These results demonstrate that the conformational dynamics of GHSR are tightly coupled to the movements of internal water molecules, further enhancing our understanding of the molecular bases of GPCR-mediated signaling.


Assuntos
Grelina , Receptores Acoplados a Proteínas G , Receptores de Grelina , Humanos , Ligantes , Transdução de Sinais
5.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375427

RESUMO

G protein-coupled Receptors (GPCRs) play a central role in many physiological processes and, consequently, constitute important drug targets. In particular, the search for allosteric drugs has recently drawn attention, since they could be more selective and lead to fewer side effects. Accordingly, computational tools have been used to estimate the druggability of allosteric sites in these receptors. In spite of many successful results, the problem is still challenging, particularly the prediction of hydrophobic sites in the interface between the protein and the membrane. In this work, we propose a complementary approach, based on dynamical correlations. Our basic hypothesis was that allosteric sites are strongly coupled to regions of the receptor that undergo important conformational changes upon activation. Therefore, using ensembles of experimental structures, normal mode analysis and molecular dynamics simulations we calculated correlations between internal fluctuations of different sites and a collective variable describing the activation state of the receptor. Then, we ranked the sites based on the strength of their coupling to the collective dynamics. In the ß2 adrenergic (ß2AR), glucagon (GCGR) and M2 muscarinic receptors, this procedure allowed us to correctly identify known allosteric sites, suggesting it has predictive value. Our results indicate that this dynamics-based approach can be a complementary tool to the existing toolbox to characterize allosteric sites in GPCRs.


Assuntos
Sítio Alostérico , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Regulação Alostérica/genética , Sítio Alostérico/genética , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Receptor Muscarínico M2/química
6.
Proc Natl Acad Sci U S A ; 116(35): 17525-17530, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31416915

RESUMO

Ghrelin plays a central role in controlling major biological processes. As for other G protein-coupled receptor (GPCR) peptide agonists, the structure and dynamics of ghrelin bound to its receptor remain obscure. Using a combination of solution-state NMR and molecular modeling, we demonstrate that binding to the growth hormone secretagogue receptor is accompanied by a conformational change in ghrelin that structures its central region, involving the formation of a well-defined hydrophobic core. By comparing its acylated and nonacylated forms, we conclude that the ghrelin octanoyl chain is essential to form the hydrophobic core and promote access of ghrelin to the receptor ligand-binding pocket. The combination of coarse-grained molecular dynamics studies and NMR should prove useful in improving our mechanistic understanding of the complex conformational space explored by a natural peptide agonist when binding to its GPCR. Such information should also facilitate the design of new ghrelin receptor-selective drugs.


Assuntos
Grelina/química , Grelina/metabolismo , Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Acilação , Animais , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
7.
Sci Rep ; 9(1): 5495, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940903

RESUMO

Through their coupling to G proteins, G Protein-Coupled Receptors (GPCRs) trigger cellular responses to various signals. Some recent experiments have interestingly demonstrated that the G protein can also act on the receptor by favoring a closed conformation of its orthosteric site, even in the absence of a bound agonist. In this work, we explored such an allosteric modulation by performing extensive molecular dynamics simulations on the adenosine A2 receptor (A2AR) coupled to the Mini-Gs protein. In the presence of the Mini-Gs, we confirmed a restriction of the receptor's agonist binding site that can be explained by a modulation of the intrinsic network of contacts of the receptor. Of interest, we observed similar effects with the C-terminal helix of the Mini-Gs, showing that the observed effect on the binding pocket results from direct local contacts with the bound protein partner that cause a rewiring of the whole receptor's interaction network.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Regulação Alostérica , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína
8.
Methods Mol Biol ; 1958: 403-436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945231

RESUMO

Membrane proteins are essential vessels for cell communication both with other cells and noncellular structures. They modulate environment responses and mediate a myriad of biological processes. Dimerization and multimerization processes have been shown to further increase the already high specificity of these processes. Due to their central role in various cell and organism functions, these multimers are often associated with health conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), and diabetes, among others.Understanding the membrane protein dimers' interface takes advantage of the specificity of the structure, for which we must pinpoint the most relevant interfacial residues, since they are extremely likely to be crucial for complex formation. Here, we describe step by step our own in silico protocol to characterize these residues, making use of known experimental structures. We detail the computational pipeline from data acquisition and pre-processing to feature extraction. A molecular dynamics simulation protocol to further study membrane dimer proteins and their interfaces is also illustrated.


Assuntos
Biologia Computacional/métodos , Proteínas de Membrana/química , Multimerização Proteica , Doença de Alzheimer/genética , Comunicação Celular/genética , Simulação por Computador , Diabetes Mellitus/genética , Humanos , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Doença de Parkinson/genética , Ligação Proteica
9.
Proc Natl Acad Sci U S A ; 115(17): 4501-4506, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632174

RESUMO

The growth hormone secretagogue receptor (GHSR) and dopamine receptor (D2R) have been shown to oligomerize in hypothalamic neurons with a significant effect on dopamine signaling, but the molecular processes underlying this effect are still obscure. We used here the purified GHSR and D2R to establish that these two receptors assemble in a lipid environment as a tetrameric complex composed of two each of the receptors. This complex further recruits G proteins to give rise to an assembly with only two G protein trimers bound to a receptor tetramer. We further demonstrate that receptor heteromerization directly impacts on dopamine-mediated Gi protein activation by modulating the conformation of its α-subunit. Indeed, association to the purified GHSR:D2R heteromer triggers a different active conformation of Gαi that is linked to a higher rate of GTP binding and a faster dissociation from the heteromeric receptor. This is an additional mechanism to expand the repertoire of GPCR signaling modulation that could have implications for the control of dopamine signaling in normal and physiopathological conditions.


Assuntos
Dopamina/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Multimerização Proteica , Receptores de Dopamina D2/química , Receptores de Grelina/química , Transdução de Sinais , Dopamina/genética , Dopamina/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Grelina/genética , Receptores de Grelina/metabolismo
10.
J Med Chem ; 60(8): 3303-3313, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28368584

RESUMO

Neurotensin exerts potent analgesia by acting at both NTS1 and NTS2 receptors, whereas NTS1 activation also results in other physiological effects such as hypotension and hypothermia. Here, we used molecular modeling approach to design highly selective NTS2 ligands by investigating the docking of novel NT[8-13] compounds at both NTS1 and NTS2 sites. Molecular dynamics simulations revealed an interaction of the Tyr11 residue of NT[8-13] with an acidic residue (Glu179) located in the ECL2 of hNTS2 or with a basic residue (Arg212) at the same position in hNTS1. The importance of the residue at position 11 for NTS1/NTS2 selectivity was further demonstrated by the design of new NT analogues bearing basic (Lys, Orn) or acid (Asp or Glu) function. As predicted by the molecular dynamics simulations, binding of NT[8-13] analogues harboring a Lys11 exhibited higher affinity toward the hNTS1-R212E mutant receptor, in which Arg212 was substituted by the negatively charged Glu residue.


Assuntos
Desenho de Fármacos , Simulação de Dinâmica Molecular , Neurotensina/análogos & derivados , Sequência de Aminoácidos , Neurotensina/metabolismo , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo
11.
J Chem Inf Model ; 57(3): 562-571, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28230370

RESUMO

In this study, we used the Martini Coarse-Grained model with no applied restraints to predict the binding mode of some peptides to G-Protein Coupled Receptors (GPCRs). Both the Neurotensin-1 and the chemokine CXCR4 receptors were used as test cases. Their ligands, NTS8-13 and CVX15 peptides, respectively, were initially positioned in the surrounding water box. Using a protocol based on Replica Exchange Molecular Dynamics (REMD), both opening of the receptors and entry of the peptides into their dedicated pockets were observed on the µs time-scale. After clustering, the most statistically representative orientations were closely related to the X-ray structures of reference, sharing both RMSD lower than 3 Å and most of the native contacts. These results demonstrate that such a model, that does not require access to tremendous computational facilities, can be helpful in predicting peptide binding to GPCRs as well as some of the receptor's conformational changes required for this key step. We also discuss how such an approach can now help to predict, de novo, the interactions of GPCRs with other intra- or extracellular peptide/protein partners.


Assuntos
Simulação de Dinâmica Molecular , Neurotensina/metabolismo , Peptídeos Cíclicos/metabolismo , Receptores CXCR4/metabolismo , Dissulfetos/química , Neurotensina/química , Peptídeos Cíclicos/química , Ligação Proteica , Conformação Proteica , Receptores CXCR4/química
12.
Biophys J ; 109(6): 1179-89, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26255588

RESUMO

Cyclin-dependent kinases (CDKs) and their associated regulatory cyclins are central for timely regulation of cell-cycle progression. They constitute attractive pharmacological targets for development of anticancer therapeutics, since they are frequently deregulated in human cancers and contribute to sustained, uncontrolled tumor proliferation. Characterization of their structural/dynamic features is essential to gain in-depth insight into structure-activity relationships. In addition, the identification of druggable pockets or key intermediate conformations yields potential targets for the development of novel classes of inhibitors. Structural studies of CDK2/cyclin A have provided a wealth of information concerning monomeric/heterodimeric forms of this kinase. There is, however, much less structural information for other CDK/cyclin complexes, including CDK4/cyclin D1, which displays an alternative (open) position of the cyclin partner relative to CDK, contrasting with the closed CDK2/cyclin A conformation. In this study, we carried out normal-mode analysis and enhanced sampling simulations with our recently developed method, molecular dynamics with excited normal modes, to understand the conformational equilibrium on these complexes. Interestingly, the lowest-frequency normal mode computed for each complex described the transition between the open and closed conformations. Exploration of these motions with an explicit-solvent representation using molecular dynamics with excited normal modes confirmed that the closed conformation is the most stable for the CDK2/cyclin A complex, in agreement with their experimentally available structures. On the other hand, we clearly show that an open↔closed equilibrium may exist in CDK4/cyclin D1, with closed conformations resembling that captured for CDK2/cyclin A. Such conformational preferences may result from the distinct distributions of frustrated contacts in each complex. Using the same approach, the putative roles of the Thr(160) phosphoryl group and the T-loop conformation were investigated. These results provide a dynamic view of CDKs revealing intermediate conformations not yet characterized for CDK members other than CDK2, which will be useful for the design of inhibitors targeting critical conformational transitions.


Assuntos
Ciclina A/metabolismo , Ciclina D1/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Ciclina A/química , Ciclina D1/química , Quinase 2 Dependente de Ciclina/química , Quinase 4 Dependente de Ciclina/química , Simulação de Dinâmica Molecular , Movimento (Física) , Conformação Proteica , Solventes/química , Relação Estrutura-Atividade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA