Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38726933

RESUMO

We investigate how electronic excitations and subsequent dissipative dynamics in the water soluble chlorophyll-binding protein (WSCP) are connected to features in two-dimensional (2D) electronic spectra, thereby comparing results from our theoretical approach with experimental data from the literature. Our calculations rely on third-order response functions, which we derived from a second-order cumulant expansion of the dissipative dynamics involving the partial ordering prescription, assuming a fast vibrational relaxation in the potential energy surfaces of excitons. Depending on whether the WSCP complex containing a tetrameric arrangement of pigments composed of two dimers with weak excitonic coupling between them binds the chlorophyll variant Chl a or Chl b, the resulting linear absorption and circular dichroism spectra and particularly the 2D spectra exhibit substantial differences in line shapes. These differences between Chl a WSCP and Chl b WSCP cannot be explained by the slightly modified excitonic couplings within the two variants. In the case of Chl a WSCP, the assumption of equivalent dimer subunits facilitates a reproduction of substantial features from the experiment by the calculations. In contrast, for Chl b WSCP, we have to assume that the sample, in addition to Chl b dimers, contains a small but distinct fraction of chemically modified Chl b pigments. The existence of such Chl b derivates has been proposed by Pieper et al. [J. Phys. Chem. B 115, 4042 (2011)] based on low-temperature absorption and hole-burning spectroscopy. Here, we provide independent evidence.


Assuntos
Proteínas de Ligação à Clorofila , Clorofila , Água , Clorofila/química , Água/química , Proteínas de Ligação à Clorofila/química , Análise Espectral/métodos , Solubilidade , Dicroísmo Circular
2.
J Phys Chem Lett ; 14(51): 11758-11767, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38117270

RESUMO

Photosystem II reaction centers extract electrons from water, providing the basis of oxygenic life on earth. Among the light-sensitive pigments of the reaction center, a central chlorophyll a dimer, known as the special pair, so far has escaped a complete theoretical characterization of its excited state properties. The close proximity of the special pair pigments gives rise to short-range effects that comprise a coupling between local and charge transfer (CT) excited states as well as other intermolecular quantum effects. Using a multiscale simulation and a diabatization technique, we show that the coupling to CT states is responsible for 45% of the excitonic coupling in the special pair. The other short-range effects cause a nonconservative nature of the circular dichroism spectrum of the reaction center by effectively rotating the electric transition dipole moments of the special pair pigments inverting and strongly enhancing their intrinsic rotational strength.

4.
Chem Sci ; 14(35): 9328-9349, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712031

RESUMO

Experimental and theoretical foundations for femtosecond time-resolved circular dichroism (TRCD) spectroscopy of excitonic systems are presented. In this method, the system is pumped with linearly polarized light and the signal is defined as the difference between the transient absorption spectrum probed with left and with right circularly polarized light. We present a new experimental setup with a polarization grating as key element to generate circularly polarized pulses. Herein the positive (negative) first order of the diffracted light is left-(right-)circularly polarized and serves as a probe pulse in a TRCD experiment. The grating is capable of transferring ultrashort broadband pulses ranging from 470 nm to 720 nm into two separate beams with opposite ellipticity. By applying a specific chopping scheme we can switch between left and right circular polarizations and detect transient absorption (TA) and TRCD spectra on a shot-to-shot basis simultaneously. We perform experiments on a squaraine polymer, investigating excitonic dynamics, and we develop a general theory for TRCD experiments of excitonically coupled systems that we then apply to describe the experimental data in this particular example. At a magic angle of 54.7° between the pump-pulse polarization and the propagation direction of the probe pulse, the TRCD and TA signals become particularly simple to analyze, since the orientational average over random orientations of complexes factorizes into that of the interaction with the pump and the probe pulse, and the intrinsic electric quadrupole contributions to the TRCD signal average to zero for isotropic samples. Application of exciton theory to linear absorption and to linear circular dichroism spectra of squaraine polymers reveals the presence of two fractions of polymer conformations, a dominant helical conformation with close interpigment distances that are suggested to lead to short-range contributions to site energy shifts and excitonic couplings of the squaraine molecules, and a fraction of unfolded random coils. Theory demonstrates that TRCD spectra of selectively excited helices can resolve state populations that are practically invisible in TA spectroscopy due to the small dipole strength of these states. A qualitative interpretation of TRCD and TA spectra in the spectral window investigated experimentally is offered. The 1 ps time component found in these spectra is related to the slow part of exciton relaxation obtained between states of the helix in the low-energy half of the exciton manifold. The dominant 140 ps time constant reflects the decay of excited states to the electronic ground state.

5.
Phys Chem Chem Phys ; 25(28): 18698-18710, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37404080

RESUMO

Photosynthetic green sulfur bacteria are able to survive under extreme low light conditions. Nevertheless, the light-harvesting efficiencies reported so far, in particular for Fenna-Matthews-Olson (FMO) protein-reaction center complex (RCC) supercomplexes, are much lower than for photosystems of other species. Here, we approach this problem with a structure-based theory. Compelling evidence for a light-harvesting efficiency around 95% is presented for native (anaerobic) conditions that can drop down to 47% when the FMO protein is switched into a photoprotective mode in the presence of molecular oxygen. Light-harvesting bottlenecks are found between the FMO protein and the RCC, and the antenna of the RCC and its reaction center (RC) with forward energy transfer time constants of 39 ps and 23 ps, respectively. The latter time constant removes an ambiguity in the interpretation of time-resolved spectra of RCC probing primary charge transfer and provides strong evidence for a transfer-to-the trap limited kinetics of excited states. Different factors influencing the light-harvesting efficiency are investigated. A fast primary electron transfer in the RC is found to be more important for a high efficiency than the site energy funnel in the FMO protein, quantum effects of nuclear motion, or variations in the mutual orientation between the FMO protein and the RCC.


Assuntos
Carcinoma de Células Renais , Chlorobi , Neoplasias Renais , Humanos , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Bactérias/metabolismo
6.
Sci Signal ; 16(771): eadd0509, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749824

RESUMO

Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/metabolismo , Canais de Cálcio/metabolismo , Aminoácidos/metabolismo , Mutação , Retículo Endoplasmático/metabolismo , Molécula 1 de Interação Estromal/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Proteína ORAI1/metabolismo , Cálcio/metabolismo
7.
Protein Sci ; 32(3): e4571, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691702

RESUMO

Stromal interaction molecule 1 (STIM1) resides in the endoplasmic reticulum (ER) membrane and senses luminal calcium (Ca2+ ) concentration. STIM1 activation involves a large-scale conformational transition that exposes a STIM1 domain termed "CAD/SOAR", - which is required for activation of the calcium channel Orai. Under resting cell conditions, STIM1 assumes a quiescent state where CAD/SOAR is suspended in an intramolecular clamp formed by the coiled-coil 1 domain (CC1) and CAD/SOAR. Here, we present a structural model of the cytosolic part of the STIM1 resting state using molecular docking simulations that take into account previously reported interaction sites between the CC1α1 and CAD/SOAR domains. We corroborate and refine previously reported interdomain coiled-coil contacts. Based on our model, we provide a detailed analysis of the CC1-CAD/SOAR binding interface using molecular dynamics simulations. We find a very similar binding interface for a proposed domain-swapped configuration of STIM1, where the CAD/SOAR domain of one monomer interacts with the CC1α1 domain of another monomer of STIM1. The rich structural and dynamical information obtained from our simulations reveals novel interaction sites such as M244, I409, or E370, which are crucial for STIM1 quiescent state stability. We tested our predictions by electrophysiological and Förster resonance energy transfer experiments on corresponding single-point mutants. These experiments provide compelling support for the structural model of the STIM1 quiescent state reported here. Based on transitions observed in enhanced-sampling simulations paired with an analysis of the quiescent STIM1 conformational dynamics, our work offers a first atomistic model for CC1α1-CAD/SOAR detachment.


Assuntos
Canais de Cálcio , Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Proteína ORAI1/metabolismo , Domínios Proteicos , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/metabolismo
8.
Photosynth Res ; 156(1): 19-37, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36040654

RESUMO

An electron-vibrational coupling model that includes the vibronic (non-adiabatic) coupling between the Q[Formula: see text] and Q[Formula: see text] transitions of chlorophyll (Chl), created by Reimers and coworkers (Scientific Rep. 3, 2761, 2013) is extended here to chlorophyll dimers with interchlorophyll excitonic coupling. The model is applied to a Chl a dimer of the water-soluble chlorophyll binding protein (WSCP). As for isolated chlorophyll, the vibronic coupling is found to have a strong influence on the high-frequency vibrational sideband in the absorption spectrum, giving rise to a band splitting. In contrast, in the CD spectrum the interplay of vibronic coupling and static disorder leads to a strong suppression of the vibrational sideband in excellent agreement with the experimental data. The conservative nature of the CD spectrum in the low-energy region is found to be caused by a delicate balance of the intermonomer excitonic coupling between the purely electronic Q[Formula: see text] transition and the Q[Formula: see text] transition involving intramolecular vibrational excitations on one hand and the coupling to higher-energy electronic transitions on the other hand.


Assuntos
Clorofila , Clorofila/metabolismo , Clorofila A
9.
Phys Chem Chem Phys ; 24(8): 5014-5038, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142765

RESUMO

A structure-based quantitative calculation of excitonic couplings between photosynthetic pigments has to describe the dynamical polarization of the protein/solvent environment of the pigments, giving rise to reaction field and screening effects. Here, this challenging problem is approached by combining the fragment molecular orbital (FMO) method with the polarizable continuum model (PCM). The method is applied to compute excitonic couplings between chlorophyll a (Chl a) pigments of the water-soluble chlorophyll-binding protein (WSCP). By calibrating the vacuum dipole strength of the 0-0 transition of the Chl a chromophores according to experimental data, an excellent agreement between calculated and experimental linear absorption and circular dichroism spectra of WSCP is obtained. The effect of the mutual polarization of the pigment ground states is calculated to be very small. The simple Poisson-Transition-charge-from-Electrostatic-potential (Poisson-TrEsp) method is found to accurately describe the screening part of the excitonic coupling, obtained with FMO/PCM. Taking into account that the reaction field effects of the latter method can be described by a scalar constant leads to an improvement of Poisson-TrEsp that is expected to provide the basis for simple and realistic calculations of optical spectra and energy transfer in photosynthetic light-harvesting complexes. In addition, we present an expression for the estimation of Huang-Rhys factors of high-frequency pigment vibrations from experimental fluorescence line-narrowing spectra that takes into account the redistribution of oscillator strength by the interpigment excitonic coupling. Application to WSCP results in corrected Huang-Rhys factors that are less than one third of the original values obtained by the standard electronic two-state analysis that neglects the above redistribution. These factors are important for the estimation of the dipole strength of the 0-0 transition of the chromophores and for the development of calculation schemes for the spectral density of the exciton-vibrational coupling.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Clorofila/química , Clorofila A/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
10.
Phys Chem Chem Phys ; 23(45): 25830-25840, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762087

RESUMO

The SecYEG translocon is a channel in bacteria, which provides a passage for secretory proteins across as well as integration of membrane proteins into the plasma membrane. The molecular mechanism, by which SecYEG manages protein transport while preventing water and ion leakage through the membrane, is still controversial. We employed molecular dynamics simulations to assess the contribution of the major structural elements - the plug and the pore ring (PR) - to the sealing of SecYEG in the active state, i.e., with a signal sequence helix occupying the lateral gate. We found, that the PR alone can provide a very tight seal for the wild-type translocon in the active state for both water and ions. Simulations of the mutant I403N, in which one of the PR-defining isoleucine residues is replaced with asparagine, suggest that hydrophobic interactions within the PR and between the PR and the plug are important for maintaining a tight conformation of the wild-type channel around the PR. Disruption of these interactions results in strong fluctuations of helix TM7 and water leakage of the translocon.


Assuntos
Simulação de Dinâmica Molecular , Canais de Translocação SEC/química , Thermus thermophilus/química , Conformação Proteica , Canais de Translocação SEC/metabolismo
11.
Cell Mol Life Sci ; 78(19-20): 6645-6667, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34498097

RESUMO

The calcium release-activated calcium (CRAC) channel consists of STIM1, a Ca2+ sensor in the endoplasmic reticulum (ER), and Orai1, the Ca2+ ion channel in the plasma membrane. Ca2+ store depletion triggers conformational changes and oligomerization of STIM1 proteins and their direct interaction with Orai1. Structural alterations include the transition of STIM1 C-terminus from a folded to an extended conformation thereby exposing CAD (CRAC activation domain)/SOAR (STIM1-Orai1 activation region) for coupling to Orai1. In this study, we discovered that different point mutations of F394 in the small alpha helical segment (STIM1 α2) within the CAD/SOAR apex entail a rich plethora of effects on diverse STIM1 activation steps. An alanine substitution (STIM1 F394A) destabilized the STIM1 quiescent state, as evident from its constitutive activity. Single point mutation to hydrophilic, charged amino acids (STIM1 F394D, STIM1 F394K) impaired STIM1 homomerization and subsequent Orai1 activation. MD simulations suggest that their loss of homomerization may arise from altered formation of the CC1α1-SOAR/CAD interface and potential electrostatic interactions with lipid headgroups in the ER membrane. Consistent with these findings, we provide experimental evidence that the perturbing effects of F394D depend on the distance of the apex from the ER membrane. Taken together, our results suggest that the CAD/SOAR apex is in the immediate vicinity of the ER membrane in the STIM1 quiescent state and that different mutations therein can impact the STIM1/Orai1 activation cascade in various manners. Legend: Upon intracellular Ca2+ store depletion of the endoplasmic reticulum (ER), Ca2+ dissociates from STIM1. As a result, STIM1 adopts an elongated conformation and elicits Ca2+ influx from the extracellular matrix (EM) into the cell due to binding to and activation of Ca2+-selective Orai1 channels (left). The effects of three point mutations within the SOARα2 domain highlight the manifold roles of this region in the STIM1/Orai1 activation cascade: STIM1 F394A is active irrespective of the intracellular ER Ca2+ store level, but activates Orai1 channels to a reduced extent (middle). On the other hand, STIM1 F394D/K cannot adopt an elongated conformation upon Ca2+ store-depletion due to altered formation of the CC1α1-SOAR/CAD interface and/or electrostatic interaction of the respective side-chain charge with corresponding opposite charges on lipid headgroups in the ER membrane (right).


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Proteínas de Neoplasias/genética , Molécula 1 de Interação Estromal/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Linhagem Celular , Membrana Celular/genética , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Mutação Puntual/genética
12.
J Comput Chem ; 42(26): 1832-1860, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34302374

RESUMO

An adaptive finite element solver for the numerical calculation of the electrostatic coupling between molecules in a solvent environment is developed and tested. At the heart of the solver is a goal-oriented a posteriori error estimate for the electrostatic coupling, derived and implemented in the present work, that gives rise to an orders of magnitude improved precision and a shorter computational time as compared to standard finite difference solvers. The accuracy of the new solver ARGOS is evaluated by numerical experiments on a series of problems with analytically known solutions. In addition, the solver is used to calculate electrostatic couplings between two chromophores, linked to polyproline helices of different lengths and between the spike protein of SARS-CoV-2 and the ACE2 receptor. All the calculations are repeated by using the well-known finite difference solvers MEAD and APBS, revealing the advantages of the present finite element solver.


Assuntos
Análise de Elementos Finitos , Eletricidade Estática , Algoritmos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Simulação por Computador , Humanos , Modelos Moleculares , Ligação Proteica , SARS-CoV-2/fisiologia , Solventes/química , Solventes/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Termodinâmica
13.
J Phys Chem B ; 125(24): 6406-6416, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34126008

RESUMO

A conceptual problem of transfer theories that use a semiclassical description of the electron-vibrational coupling is the neglect of the correlation between momenta and coordinates of nuclei. In the Redfield theory of exciton relaxation, this neglect leads to a violation of the principle of detailed balance; equal "uphill" and "downhill" transfer rate constants are obtained. Here, we investigate how this result depends on nuclear reorganization effects, neglected in Redfield but taken into account in the modified Redfield theory. These reorganization effects, resulting from a partial localization of excited states, are found to promote a preferential "downhill" relaxation of excitation energy. However, for realistic spectral densities of light-harvesting antennae in photosynthesis, the reorganization effects are too small to compensate for the missing coordinate-momentum uncertainty. For weaker excitonic couplings as they occur between domains of strongly coupled pigments, we find the principle of detailed balance to be fulfilled in a semiclassical variant of the generalized Förster theory. A qualitatively correct description of the transfer is obtained with this theory at a significantly lower computational cost as with the quantum generalized Förster theory. Larger deviations between the two theories are expected for large energy gaps as they occur in complexes with chemically different pigments.


Assuntos
Fotossíntese , Vibração , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Movimento (Física)
14.
Nat Chem Biol ; 17(2): 196-204, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33106661

RESUMO

The calcium release activated calcium channel is activated by the endoplasmic reticulum-resident calcium sensor protein STIM1. On activation, STIM1 C terminus changes from an inactive, tight to an active, extended conformation. A coiled-coil clamp involving the CC1 and CC3 domains is essential in controlling STIM1 activation, with CC1 as the key entity. The nuclear magnetic resonance-derived solution structure of the CC1 domain represents a three-helix bundle stabilized by interhelical contacts, which are absent in the Stormorken disease-related STIM1 R304W mutant. Two interhelical sites between the CC1α1 and CC1α2 helices are key in controlling STIM1 activation, affecting the balance between tight and extended conformations. Nuclear magnetic resonance-directed mutations within these interhelical interactions restore the physiological, store-dependent activation behavior of the gain-of-function STIM1 R304W mutant. This study reveals the functional impact of interhelical interactions within the CC1 domain for modifying the CC1-CC3 clamp strength to control the activation of STIM1.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Proteínas de Neoplasias/genética , Molécula 1 de Interação Estromal/genética , Transtornos Plaquetários/genética , Clonagem Molecular , Dislexia/genética , Eritrócitos Anormais , Células HEK293 , Humanos , Ictiose/genética , Espectroscopia de Ressonância Magnética , Transtornos de Enxaqueca/genética , Miose/genética , Modelos Moleculares , Fadiga Muscular/genética , Mutação/genética , Conformação de Ácido Nucleico , Proteína ORAI1/genética , Técnicas de Patch-Clamp , Baço/anormalidades
15.
J Chem Phys ; 153(21): 215103, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291900

RESUMO

The intermolecular contribution to the spectral density of the exciton-vibrational coupling of the homotrimeric Fenna-Matthews-Olson (FMO) light-harvesting protein of green sulfur bacteria P. aestuarii is analyzed by combining a normal mode analysis of the protein with the charge density coupling method for the calculation of local transition energies of the pigments. Correlations in site energy fluctuations across the whole FMO trimer are found at low vibrational frequencies. Including, additionally, the high-frequency intrapigment part of the spectral density, extracted from line-narrowing spectra, we study intra- and intermonomer exciton transfer. Whereas the intrapigment part of the spectral density is important for fast intramonomer exciton relaxation, the intermolecular contributions (due to pigment-environment coupling) determine the intermonomer exciton transfer. Neither the variations of the local Huang-Rhys factors nor the correlations in site energy fluctuations have a critical influence on energy transfer. At room temperature, the intermonomer transfer in the FMO protein occurs on a 10 ps time scale, whereas intramonomer exciton equilibration is roughly two orders of magnitude faster. At cryogenic temperatures, intermonomer transfer limits the lifetimes of the lowest exciton band. The lifetimes are found to increase between 20 ps in the center of this band up to 100 ps toward lower energies, which is in very good agreement with the estimates from hole burning data. Interestingly, exciton delocalization in the FMO monomers is found to slow down intermonomer energy transfer, at both physiological and cryogenic temperatures.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Químicos , Teoria Quântica
16.
J Phys Chem Lett ; 11(24): 10306-10314, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33227205

RESUMO

Inhomogeneous broadening of optical lines of the Fenna-Matthews-Olson (FMO) light-harvesting protein is investigated by combining a Monte Carlo sampling of low-energy conformational substates of the protein with a quantum chemical/electrostatic calculation of local transition energies (site energies) of the pigments. The good agreement between the optical spectra calculated for the inhomogeneous ensemble and the experimental data demonstrates that electrostatics is the dominant contributor to static disorder in site energies. Rotamers of polar amino acid side chains are found to cause bimodal distribution functions of site energy shifts, which can be probed by hole burning and single-molecule spectroscopy. When summing over the large number of contributions, the resulting distribution functions of the site energies become Gaussians, and the correlations in site energy fluctuations at different sites practically average to zero. These results demonstrate that static disorder in the FMO protein is in the realm of the central limit theorem of statistics.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Dicroísmo Circular , Teoria da Densidade Funcional , Método de Monte Carlo , Conformação Proteica , Teoria Quântica
17.
Sci Adv ; 6(14): eaaz4888, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284982

RESUMO

Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.


Assuntos
Transferência de Energia , Fotossíntese , Teoria Quântica , Algoritmos , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Teóricos , Análise Espectral
18.
J Phys Chem B ; 123(5): 1090-1098, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30604975

RESUMO

Anisotropic circular dichroism (ACD) spectroscopy of macroscopically aligned molecules reveals additional information about their excited states that is lost in the CD of randomly oriented solutions. ACD spectra of light-harvesting complex II (LHCII)-the main peripheral antenna of photosystem II in plants-in oriented lipid bilayers were recorded from the far-UV to the visible wavelength region. ACD spectra show a drastically enhanced magnitude and level of detail compared to the isotropic CD spectra, resolving a greater number of bands and weak optical transitions. Exciton calculations show that the spectral features in the chlorophyll Q y region are well-reproduced by an existing Hamiltonian for LHCII, providing further evidence for the identity of energy sinks at chlorophylls a603 and a610 in the stromal layer and chlorophylls a604 and a613 in the luminal layer. We propose ACD spectroscopy to be a valuable tool linking the three-dimensional structure and the photophysical properties of pigment-protein complexes.

19.
J Phys Chem Lett ; 9(23): 6892-6899, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30449098

RESUMO

The photosynthetic apparatus of purple bacteria uses exciton delocalization and static disorder to modulate the position and broadening of its absorption bands, leading to efficient light harvesting. Its main antenna complex, LH2, contains two rings of identical bacteriochlorophyll pigments, B800 and B850, absorbing at 800 and 850 nm, respectively. It has been an unsolved problem why static disorder of the strongly coupled B850 ring is several times larger than that of the B800 ring. Here we show that mixing between excitons and charge transfer states in the B850 ring is responsible for the effect. The linear absorption spectrum of the LH2 system is simulated by using a multiscale approach with an exciton Hamiltonian generalized to include the charge transfer states that involve adjacent pigment pairs, with static disorder modeled microscopically by molecular dynamics simulations. Our results show that sufficient inhomogeneous broadening of the B850 band, needed for efficient light harvesting, is only obtained by utilizing static disorder in the coupling between local excited and interpigment charge transfer states.


Assuntos
Bacterioclorofilas/química , Complexos de Proteínas Captadores de Luz/química , Proteobactérias/metabolismo , Sítios de Ligação , Simulação de Dinâmica Molecular , Fotossíntese , Conformação Proteica , Termodinâmica
20.
J Phys Chem Lett ; 9(20): 5940-5947, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30247921

RESUMO

We present a microscopic theory for the description of fluctuation-induced excitation energy transfer in chromophore dimers to explain experimental data on a perylene biscarboximide dyad with orthogonal transition dipole moments. Our non-Condon extension of Förster theory takes into account the fluctuations of excitonic couplings linear and quadratic in the normal coordinates, treated microscopically by quantum chemical/electrostatic calculations. The modulation of the optical transition energies of the chromophores is inferred from optical spectra of the isolated chromophores. The application of the theory to the considered dyad reveals a two to three order of magnitude increase in the rate constant by non-Condon effects. These effects are found to be dominated by fluctuations linear in the normal coordinates and provide a structure-based qualitative interpretation of the experimental time constant for energy transfer as well as its dependence on temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA