Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Plant Cell Environ ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351860

RESUMO

Increasing desertification constitutes a global environmental problem, mainly driven by climate change and inappropriate land-use that limits agriculture, forestry and human colonization. The selection of suitable plant species to mitigate desertification is particularly challenging, as it usually requires simultaneous counteraction against a whole set of unfavourable environmental conditions, including heat, drought, high tropospheric ozone and salinity. It therefore seems useful to identify the survival strategies of plants native in desert environments. Date palm constitutes a plant species native in desert environments and cultivated worldwide in arid regions that have been studied intensively for stress defence during the last decade. The present review summarizes the current state of biochemical stress defence mechanisms including avoidance, osmotic and metabolic adjustments and reactive oxygen species scavenging, addresses whole-plant regulations and trade-off between stress compensation/defence and growth of date palms. The review advances our knowledge about how this typical desert species copes with both individual and multiple environmental stresses at the cellular to the whole-plant level, and identifies areas of future research required to fully understand the strategies of this plant species to survive in the desert, thereby contributing to efforts for the mitigation of climate change and desertification.

2.
Sci Total Environ ; 955: 176748, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39395494

RESUMO

Biochar (BC) amendment has been proposed as a promising strategy for mitigating greenhouse gas (GHG) emissions, specifically carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Conducting a meta-analysis to evaluate the impact of biochar on microbial genetic profile, community structure, and phospholipid fatty acid (PLFA) contents can aid in identifying key microbial groups involved in GHG production and consumption, and assessing the overall effectiveness of biochar in reducing GHG emissions. The present meta-analysis revealed that the addition of biochar resulted in a 22 % and 41 % reduction in pmoA and mcrA genes of methanogenic microorganisms, respectively. The mcrA/pmoA ratio significantly increased by 81 %. Gene abundances exhibited a positive response to biochar amendment, with increases observed in nifH, nirK, nirS, nosZ, and nosZ (nirS + nirK) genes by 13 %, 32 %, 37 %, 42 %, and 79 %, respectively. Moreover, biochar amendment influenced the microbial community structure accordingly. The concentration of PLFAs increased in response to BC treatment in the following order: A-bacteria (+49 %) < Fungi (+30 %) < Gram-pb (+21 %) < G-bacteria (+17 %) < Gram-nb (+11 %). These findings indicate that biochar amendment shapes the microbial community structure, further emphasizing its significance in enhancing soil fertility.

3.
Sci Total Environ ; 952: 175943, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218094

RESUMO

Soil respiration (Rs) is projected to be substantially affected by climate change, impacting the storage, equilibrium, and movement of terrestrial carbon (C). However, uncertainties surrounding the responses of Rs to climate change and soil nitrogen (N) enrichment are linked to mechanisms specific to diverse climate zones. A comprehensive meta-analysis was conducted to address this, evaluating the global effects of warming, increased precipitation, and N enrichment on Rs across various climate zones and ecosystems. Data from 123 studies, encompassing a total of 10,377 worldwide observations, were synthesized for this purpose. Annual Rs were modeled and their uncertainties were associated with a 1-km2 resolution global Rs database spanning from 1961 to 2022. Calibrating Rs using ensemble machine learning (EML) and employing 10-fold cross-validation, 13 environmental covariates were utilized. The meta-analysis findings revealed an upsurge in Rs rates in response to warming, with tropical, arid, and temperate climate zones exhibiting increases of 12 %, 13 %, and 16 %, respectively. Furthermore, increased precipitation led to stimulated Rs rates of 11 % and 9 % in tropical and temperate zones, respectively, while N deposition affected Rs in cold (+6 %) and tropical (+5 %) climate zones. The machine learning technique estimated the global soil respiration to range from 91 to 171 Pg C yr-1, with an average Rs of 700 ± 300 g C m-2 yr-1. The values ranged between 314 and 2500 g C m-2 yr-1, with the lowest and highest values observed in cold and tropical zones, respectively. Spatial variation in Rs was most pronounced in low-latitude areas, particularly in tropical rainforests and monsoon zones. Temperature, precipitation, and N deposition were identified as crucial environmental factors exerting significant influences on Rs rates worldwide. These factors underscore the interconnectedness between climate and ecosystem processes, therefore requiring explicit considerations of different climate zones when assessing responses of Rs to global change.

4.
J Hazard Mater ; 478: 135612, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39182290

RESUMO

Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.


Assuntos
Biodegradação Ambiental , Chumbo , Folhas de Planta , Raízes de Plantas , Robinia , Poluentes do Solo , Enxofre , Simbiose , Robinia/efeitos dos fármacos , Robinia/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Enxofre/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Rhizobium/metabolismo , Rhizobium/efeitos dos fármacos , Antioxidantes/metabolismo , Nodulação/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
5.
Physiol Plant ; 176(3): e14365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38802725

RESUMO

Lavender plantation is globally expanded due to the increasing demand of its essential oil and its popularity as an ornamental species. However, lavender plantations, and consequently essential oil industries, are threatened by more frequent and severe drought episodes in a globally changing climate. Still little is known about the changes in the general metabolome, which provides the precursors of essential oil production, by extended drought events. Prolonged drought fundamentally results in yield losses and changing essential oil composition. In the present study, the general metabolome of a main cultivated lavender species (Lavandula angustifolia Mill.) in response to water deprivation (WD) and re-watering was analyzed to identify the metabolomics responses. We found prolonged WD resulted in significant accumulations of glucose, 1,6-anhydro-ß-D-glucose, sucrose, melezitose and raffinose, but declines of allulose, ß-D-allose, altrose, fructose and D-cellobiose accompanied by decreased organic acids abundances. Amino acids and aromatic compounds of p-coumaric acid, hydrocaffeic acid and caffeic acid significantly accumulated at prolonged WD, whereas aromatics of cis-ferulic acid, taxifolin and two fatty acids (i.e., palmitic acid and stearic acid) significantly decreased. Prolonged WD also resulted in decreased abundances of polyols, particularly myo-inositol, galactinol and arabitol. The altered metabolite profiles by prolonged WD were mostly not recovered after re-watering, except for branched-chain amino acids, proline, serine and threonine. Our study illustrates the complex changes of leaf primary and secondary metabolic processes of L. angustifolia by drought events and highlights the potential impact of these precursors of essential oil production on the lavender industry.


Assuntos
Lavandula , Metaboloma , Folhas de Planta , Água , Lavandula/metabolismo , Lavandula/genética , Folhas de Planta/metabolismo , Água/metabolismo , Secas , Óleos Voláteis/metabolismo , Metabolômica
6.
Biol Rev Camb Philos Soc ; 99(4): 1524-1536, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38561998

RESUMO

In their environment, plants are exposed to a multitude of abiotic and biotic stresses that differ in intensity, duration and severity. As sessile organisms, they cannot escape these stresses, but instead have developed strategies to overcome them or to compensate for the consequences of stress exposure. Defence can take place at different levels and the mechanisms involved are thought to differ in efficiency across these levels. To minimise metabolic constraints and to reduce the costs of stress defence, plants prioritise first-line defence strategies in the apoplastic space, involving ascorbate, defensins and small peptides, as well as secondary metabolites, before cellular processes are affected. In addition, a large number of different symplastic mechanisms also provide efficient stress defence, including chemical antioxidants, antioxidative enzymes, secondary metabolites, defensins and other peptides as well as proteins. At both the symplastic and the apoplastic level of stress defence and compensation, a number of specialised transporters are thought to be involved in exchange across membranes that still have not been identified, and information on the regeneration of different defence compounds remains ambiguous. In addition, strategies to overcome and compensate for stress exposure operate not only at the cellular, but also at the organ and whole-plant levels, including stomatal regulation, and hypersensitive and systemic responses to prevent or reduce the spread of stress impacts within the plant. Defence can also take place at the ecosystem level by root exudation of signalling molecules and the emission of volatile organic compounds, either directly or indirectly into the rhizosphere and/or the aboveground atmosphere. The mechanisms by which plants control the production of these compounds and that mediate perception of stressful conditions are still not fully understood. Here we summarise plant defence strategies from the cellular to ecosystem level, discuss their advantages and disadvantages for plant growth and development, elucidate the current state of research on the transport and regeneration capacity of defence metabolites, and outline insufficiently explored questions for further investigation.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas , Estresse Fisiológico , Estresse Fisiológico/fisiologia , Plantas/metabolismo
7.
Physiol Plant ; 176(2): e14205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439620

RESUMO

Rhizobia and arbuscular mycorrhizal fungi (AMF) are symbiotic microorganisms important for plants grown in nutrient-deficient and heavy metal-contaminated soils. However, it remains unclear how plants respond to the coupled stress by heavy metal and nitrogen (N) deficiency under co-inoculation. Here, we investigated the synergistic effect of Mesorhizobium huakuii QD9 and Funneliformis mosseae on the response of black locust (Robinia pseudoacacia L.) grown in sand culture to cadmium (Cd) under N deficiency conditions. The results showed that single inoculation of AMF improved the growth and Cd resistance of black locust, co-inoculation improved the most. Compared to non-inoculated controls, co-inoculation mediated higher biomass and antioxidant enzyme activity, reduced oxidative stress, and promoted nodulation, mycorrhizal colonization, photosynthetic capacity, and N, P, Fe and Mg acquisition when exposed to Cd. This increase was significantly higher under N deficiency compared to N sufficiency. In addition, the uptake of Cd by co-inoculated black locust roots increased, but Cd translocation to the above-ground decreased under both N deficiency and sufficiency. Thus, in the tripartite symbiotic system, not merely metabolic processes but also Cd uptake increased under N deficiency. However, enhanced Cd detoxification in the roots and reduced allocation to the shoot likely prevent Cd toxicity and rather stimulated growth under these conditions.


Assuntos
Micorrizas , Rhizobium , Robinia , Cádmio/toxicidade , Areia , Antioxidantes
8.
J Hazard Mater ; 467: 133717, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325100

RESUMO

Nitrogen (N2)-fixing legumes can be used for phytoremediation of toxic heavy metal Mercury (Hg) contaminated soil, but N2-fixation highly relies on phosphorus (P) availability for nodule formation and functioning. Here, we characterized the significance of P deficiency for Hg accumulation and toxicity in woody legume plants. Consequences for foliar and root traits of rhizobia inoculation, Hg exposure (+Hg) and low P (-P) supply, individually and in combination were characterized at both the metabolite and transcriptome levels in seedlings of two Robinia pseudoacacia L. provenances originating from contrasting climate and soil backgrounds, i.e., GS in northwest and the DB in northeast China. Our results reveal that depleted P mitigates the toxicity of Hg at the transcriptional level. In leaves of Robinia depleted P reduced oxidative stress and improved the utilization strategy of C, N and P nutrition; in roots depleted P regulated the expression of genes scavenging oxidative stress and promoting cell membrane synthesis. Rhizobia inoculation significantly improved the performance of both Robinia provenances under individual and combined +Hg and -P by promoting photosynthesis, increasing foliar N and P content and reducing H2O2 and MDA accumulation despite enhanced Hg uptake. DB plants developed more nodules, had higher biomass and accumulated higher Hg amounts than GS plants and thus are suggested as the high potential Robinia provenance for future phytoremediation of Hg contaminated soils with P deficiency.


Assuntos
Fabaceae , Mercúrio , Robinia , Peróxido de Hidrogênio , Mercúrio/toxicidade , Solo , Nitrogênio/química
9.
Environ Pollut ; 345: 123456, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307241

RESUMO

The role of rhizobia in alleviating cadmium (Cd) stress in woody legumes is still unclear. Therefore, two types of black locust (Robinia pseudoacacia L.) with high and low Cd accumulation abilities were selected from 11 genotypes in China, and the effects of rhizobium (Mesorhizobium huakuii GP1T11) inoculation on the growth, CO2 and H2O gas exchange parameters, Cd accumulation, and the absorption of mineral elements of the high (SX) and low Cd-accumulator (HB) were compared. The results showed that rhizobium-inoculation significantly increased biomass, shoot Cd contents, Cd accumulation, root-to-shoot translocation factor (TF) and the absorption and accumulation of mineral elements in both SX and HB. Rhizobium-inoculation increased chlorophyll a and carotenoid contents, and the intercellular carbon dioxide concentrations in HB plants. Under Cd exposure, the high-accumulator SX exhibited a significant decrease in photosynthetic CO2 fixation (Pn) and an enhanced accumulation of Cd in leaves, but coped with Cd exposure by increasing chlorophyll synthesis, regulating stomatal aperture (Gs), controlling transpiration (Tr), and increasing the absorption and accumulation of mineral elements. In contrast, the low-accumulator HB was more sensitive to Cd exposure despite preferential accumulation of Cd in roots, with decreased chlorophyll and carotenoid contents, but significantly increased root biomass. Compared to the low-accumulator HB, non-inoculated Cd-exposed SX plants had higher chlorophyll contents, and rhizobium-inoculated Cd-exposed SX plants had higher Pn, Tr, and Gs as well as higher levels of P, K, Fe, Ca, Zn, and Cu. In conclusion, the high- and low-Cd-accumulator exhibited different physiological responses to Cd exposure. Overall, rhizobium-inoculation of black locust promoted the growth and heavy metal absorption, providing an effective strategy for the phytoremediation of heavy metal-contaminated soils by this woody legume.


Assuntos
Metais Pesados , Rhizobium , Robinia , Poluentes do Solo , Cádmio/toxicidade , Robinia/fisiologia , Clorofila A , Dióxido de Carbono/análise , Metais Pesados/farmacologia , Clorofila , Minerais , Carotenoides , Biodegradação Ambiental , Poluentes do Solo/análise
10.
Tree Physiol ; 44(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38195893

RESUMO

The growth of fruit trees depends on the nitrogen (N) remobilization in mature tissues and N acquisition from the soil. However, in evergreen mature citrus (Citrus reticulata Blanco) leaves, proteins with N storage functions and hub molecules involved in driving N remobilization remain largely unknown. Here, we combined proteome and physiological analyses to characterize the spatiotemporal mechanisms of growth of new leaves and storage protein degradation in mature leaves of citrus trees exposed to low-N and high-N fertilization in the field. Results show that the growth of new leaves is driven by remobilization of stored reserves, rather than N uptake by the roots. In this context, proline and arginine in mature leaves acted as N sources supporting the growth of new leaves in spring. Time-series analyses with gel electrophoresis and proteome analysis indicated that the mature autumn shoot leaves are probably the sites of storage protein synthesis, while the aspartic endopeptidase protein is related to the degradation of storage proteins in mature citrus leaves. Furthermore, bioinformatic analysis based on protein-protein interactions indicated that glutamate synthetase and ATP-citrate synthetase are hub proteins in N remobilization from mature citrus leaves. These results provide strong physiological data for seasonal optimization of N fertilizer application in citrus orchards.


Assuntos
Citrus , Proteoma , Proteoma/metabolismo , Árvores/fisiologia , Proteólise , Citrus/metabolismo , Folhas de Planta/fisiologia , Nitrogênio/metabolismo , Glutamato-Amônia Ligase/metabolismo
11.
Environ Pollut ; 342: 123050, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042473

RESUMO

Interaction of different environmental constrains pose severe threats to plants that cannot be predicted from individual stress exposure. In this context, mercury (Hg), as a typical toxic and hazardous heavy metal, has recently attracted particular attention. Nitrogen (N2)-fixing legumes can be used for phytoremediation of Hg accumulation, whereas N availability could greatly affect its N2-fixation efficiency. However, information on the physiological responses to combined Hg exposure and excess N supply of woody legume species is still lacking. Here, we investigated the interactive effects of rhizobia inoculation, Hg exposure (+Hg), and high N (+N) supply, individually and in combination (+N*Hg), on photosynthesis and biochemical traits in Robinia pseudoacacia L. seedlings of two provenances, one from Northeast (DB) and one from Northwest (GS) China. Our results showed antagonistic effects of combined + N*Hg exposure compared to the individual treatments that were provenance-specific. Compared to individual Hg exposure, combined + N*Hg stress significantly increased foliar photosynthesis (+50.6%) of inoculated DB seedlings and resulted in more negative (-137.4%) δ15N abundance in the roots. Furthermore, combined + N*Hg stress showed 47.7% increase in amino acid N content, 39.4% increase in NR activity, and 14.8% decrease in MDA content in roots of inoculated GS seedlings. Inoculation with rhizobia significantly promoted Hg uptake in both provenances, reduced MDA contents of leaves and roots, enhanced photosynthesis and maintained the nutrient balance of Robinia. Among the two Robinia provenances investigated, DB seedlings formed more nodules, had higher biomass and Hg accumulation than GS seedlings. For example, total Hg concentrations in leaves and roots and total biomass of inoculated DB seedlings were 1.3,1.9 and 3.4 times higher than in inoculated GS seedlings under combined + N*Hg stress, respectively. Therefore, the DB provenance is considered to possess a higher potential for phytoremediation of Hg contamination compared to the GS provenance in environments subjected to N deposition.


Assuntos
Fabaceae , Mercúrio , Rhizobium , Robinia , Robinia/metabolismo , Simbiose , Mercúrio/toxicidade , Mercúrio/metabolismo , Biodegradação Ambiental , Nitrogênio/metabolismo , Plântula
12.
Plant Genome ; 17(1): e20372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37518859

RESUMO

Date palm (Phoenix dactylifera L.) is able to grow and complete its life cycle while being rooted in highly saline soils. Which of the many well-known salt-tolerance strategies are combined to fine-tune this remarkable resilience is unknown. The precise location, whether in the shoot or the root, where these strategies are employed remains uncertain, leaving us unaware of how the various known salt-tolerance mechanisms are integrated to fine-tune this remarkable resilience. To address this shortcoming, we exposed date palm to a salt stress dose equivalent to seawater for up to 4 weeks and applied integrative multi-omics analyses followed by targeted metabolomics, hormone, and ion analyses. Integration of proteomic into transcriptomic data allowed a view beyond simple correlation, revealing a remarkably high degree of convergence between gene expression and protein abundance. This sheds a clear light on the acclimatization mechanisms employed, which depend on reprogramming of protein biosynthesis. For growth in highly saline habitats, date palm effectively combines various salt-tolerance mechanisms found in both halophytes and glycophytes: "avoidance" by efficient sodium and chloride exclusion at the roots, and "acclimation" by osmotic adjustment, reactive oxygen species scavenging in leaves, and remodeling of the ribosome-associated proteome in salt-exposed root cells. Combined efficiently as in P. dactylifera L., these sets of mechanisms seem to explain the palm's excellent salt stress tolerance.


Assuntos
Phoeniceae , Phoeniceae/genética , Plantas Tolerantes a Sal/genética , Multiômica , Proteômica , Água do Mar
13.
Chemosphere ; 346: 140619, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944768

RESUMO

Urea is the most frequently used nitrogen (N) fertilizer worldwide. However, the mechanisms in plants to cope with excess urea are largely unknown, especially for woody legumes that can meet their N demand by their own N2-fixation capacity. Here, we studied the immediate consequences of different amounts of urea application and exposure duration on photosynthesis, N metabolism, and the activity of antioxidative enzymes of Robinia pseudoacacia seedlings. For this purpose, seedlings were grown for 3 months under normal N availability with rhizobia inoculation and, subsequently, 50 mg N kg-1 was applied to the soil twice with urea as additional N source. Our results show that excess urea application significantly promoted photosynthesis, which increased by 80.3% and 84.7% compared with CK after the 1st and 2nd urea applications, respectively. The increase in photosynthesis translated into an increase in root and nodule biomass of 88.7% and 82.0%, respectively, while leaf biomass decreased by 4.8% after the first application of urea. The N content in leaves was 92.6% higher than in roots, but excess urea application increased the N content of protein and free amino acids in roots by 25.0%, and 43.3%, respectively. Apparently, enhanced root growth and N storage in the roots constitute mechanisms to prevent the negative consequences of excess N in the shoot upon urea application. Nitrate reductase (NR) activity of leaves and roots increased by 74.4% and 26.3%, respectively. Glutathione reductase (GR) activity in leaves and roots was enhanced by 337% and 34.0%, respectively, but then decreased rapidly to the initial level before fertilization. This result shows that not only N metabolism, but also antioxidative capacity was transiently promoted by excess urea application. Apparently, excess urea application initially poses oxidative stress to the plants that is immediately counteracted by enhanced scavenging of reactive oxygen species via enhanced GR activity.


Assuntos
Robinia , Robinia/metabolismo , Plântula/metabolismo , Fotossíntese , Solo/química , Nitrogênio , Antioxidantes/metabolismo , Raízes de Plantas/metabolismo , Folhas de Planta/metabolismo
14.
J Hazard Mater ; 465: 133236, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141298

RESUMO

Biochar could reshape microbial communities, thereby altering methylmercury (MeHg) concentrations in rice rhizosphere and seeds. However, it remains unclear whether and how biochar amendment perturbs microbe-mediated MeHg production in mercury (Hg) contaminated paddy soil. Here, we used pinecone-derived biochar and its six modified biochars to reveal the disturbance. Results showed that selenium- and chitosan-modified biochar significantly reduced MeHg concentrations in the rhizosphere by 85.83% and 63.90%, thereby decreasing MeHg contents in seeds by 86.37% and 75.50%. The two modified bicohars increased the abundance of putative Hg-resistant microorganisms Bacillus, the dominant microbe in rhizosphere. These reductions about MeHg could be facilitated by biochar sensitive microbes such as Oxalobacteraceae and Subgroup_7. Pinecone-derived biochar increased MeHg concentration in rhizosphere but unimpacted MeHg content in seeds was observed. This biochar decreased the abundance in Bacillus but enhanced in putative Hg methylator Desulfovibrio. The increasing MeHg concentration in rhizosphere could be improved by biochar sensitive microbes such as Saccharimonadales and Clostridia. Network analysis showed that Saccharimonadales and Clostridia were the most prominent keystone taxa in rhizosphere, and the three biochars manipulated abundances of the microbes related to MeHg production in rhizosphere by those biochar sensitive microbes. Therefore, selenium- and chitosan-modified biochar could reduce soil MeHg production by these microorganisms, and is helpful in controlling MeHg contamination in rice.


Assuntos
Carvão Vegetal , Quitosana , Mercúrio , Compostos de Metilmercúrio , Oryza , Selênio , Poluentes do Solo , Compostos de Metilmercúrio/análise , Poluentes do Solo/análise , Mercúrio/análise , Solo
15.
Environ Pollut ; 342: 123143, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097156

RESUMO

Tropospheric ozone (O3) is a significant phytotoxic air pollutant that has a negative impact on plant carbon gain. Although date palm (Phoenix dactylifera L.) is a globally important crop in arid or semi-arid regions, so far O3 risk assessment for this species has not been reported. This study estimated leaf- and plant-level photosynthetic CO2 uptake for understanding how elevated levels of O3 affects date palm biomass growth. Ozone risks to date palm plants were assessed based on exposure- (AOT40) or flux-based indices (Phytotoxic Ozone Dose, PODy, where y is a threshold of uptake). For this purpose, plants were exposed to three levels of O3 [ambient air, AA (45 ppb as daily average); 1.5 × AA; 2.0 × AA] for 92 days in an O3 Free-Air Controlled Exposure facility. According to the model simulations, the negative effects of O3 on plant-level net photosynthetic CO2 uptake were attributed to reduced gross photosynthetic carbon gain and increased respiratory carbon loss. Season-long O3 exposure and elevated temperatures promoted the negative O3 effect because of a further increase of respiratory carbon loss, which was caused by increased leaf temperature due to stomatal closure. POD1 nonlinearly affected the photosynthetic CO2 uptake, which was closely related to the variation of dry mass increment during the experiment. Although the dose-response relationship suggested that a low O3 dose (POD1 < 5.2 mmol m-2) may even positively affect photosynthetic CO2 uptake in date palms, stomatal O3 uptake at the current ambient O3 levels has potentially a negative impact on date palm growth. The results indicate 5.8 mmol m-2 POD1 or 21.1 ppm h AOT40 as critical levels corresponding to a 4% reduction of net CO2 uptake for date palm, suggesting that this species can be identified as a species moderately sensitive to O3.


Assuntos
Poluentes Atmosféricos , Ozônio , Phoeniceae , Ozônio/análise , Dióxido de Carbono/toxicidade , Folhas de Planta/química , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Fotossíntese
16.
Environ Int ; 178: 108066, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37399771

RESUMO

The plant microbiota can affect plant health and fitness by promoting methylmercury (MeHg) production in paddy soil. Although most well-known mercury (Hg) methylators are observed in the soil, it remains unclear how rice rhizosphere assemblages alter MeHg production. Here, we used network analyses of microbial diversity to identify bulk soil (BS), rhizosphere (RS) and root bacterial networks during rice development at Hg gradients. Hg gradients greatly impacted the niche-sharing of taxa significantly relating to MeHg/THg, while plant development had little effect. In RS networks, Hg gradients increased the proportion of MeHg-related nodes in total nodes from 37.88% to 45.76%, but plant development enhanced from 48.59% to 50.41%. The module hub and connector in RS networks included taxa positively (Nitrososphaeracea, Vicinamibacteraceae and Oxalobacteraceae) and negatively (Gracilibacteraceae) correlating with MeHg/THg at the blooming stage. In BS networks, Deinococcaceae and Paludibacteraceae were positively related to MeHg/THg, and constituted the connector at the reviving stage and the module hub at the blooming stage. Soil with an Hg concentration of 30 mg kg-1 increased the complexity and connectivity of root microbial networks, although microbial community structure in roots was less affected by Hg gradients and plant development. As most frequent connector in root microbial networks, Desulfovibrionaceae did not significantly correlate with MeHg/THg, but was likely to play an important role in the response to Hg stress.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Compostos de Metilmercúrio/análise , Oryza/química , Solo/química , Monitoramento Ambiental , Poluentes do Solo/análise , Mercúrio/análise , Bactérias
17.
Sci Total Environ ; 892: 164597, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37271400

RESUMO

Anthropogenic activities such as mining, smelting, and overapplication of fertilizers contribute to introducing cadmium (Cd) into the biosphere. Cd accumulation in edible plants leads to phytotoxicity and reduces biomass formation and food production, posing a significant threat to global food security. Nitric oxide (NO) is a highly active gaseous signalling molecule involved in regulating plant responses to Cd stress. These responses include the protective role of NO in enhancing plant resistance to Cd exposure via activating the antioxidant defense system, maintaining intracellular redox homeostasis, and initiating the expression of genes relevant to stress defense. However, NO exacerbates Cd toxicity by promoting Cd uptake and accelerating programmed cell death in plants. These contradictory responses render the role of NO in regulating plant performance under Cd exposure highly controversial. To better understand the mechanisms responsible for the dual role of NO, we summarized the current knowledge on (1) the processes of Cd accumulation and detoxification in plants, (2) the pathways of NO synthesis and metabolism under Cd stress, and (3) the function of NO in regulating plant responses to Cd stress at the physiological and molecular levels. From this literature review, the processes responsible for the dual role of NO in plant responses to Cd exposure were deduced, and topics for future studies on the mechanisms of NO-mediated regulation of Cd detoxification in plants were identified.


Assuntos
Cádmio , Óxido Nítrico , Cádmio/toxicidade , Cádmio/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Antioxidantes/metabolismo , Oxirredução
18.
BMC Plant Biol ; 23(1): 132, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882685

RESUMO

BACKGROUND: The cactus family (Cactaceae) has been reported to have evolved a minimal photosynthetic plastome size, with the loss of inverted-repeat (IR) regions and NDH gene suites. However, there are very limited genomic data on the family, especially Cereoideae, the largest subfamily of cacti. RESULTS: In the present study, we assembled and annotated 35 plastomes, 33 of which were representatives of Cereoideae, alongside 2 previously published plastomes. We analyzed the organelle genomes of 35 genera in the subfamily. These plastomes have variations rarely observed in those of other angiosperms, including size differences (with ~ 30 kb between the shortest and longest), dramatic dynamic changes in IR boundaries, frequent plastome inversions, and rearrangements. These results suggested that cacti have the most complex plastome evolution among angiosperms. CONCLUSION: These results provide unique insight into the dynamic evolutionary history of Cereoideae plastomes and refine current knowledge of the relationships within the subfamily.


Assuntos
Cactaceae , Magnoliopsida , Rearranjo Gênico , Genômica , Fotossíntese
19.
Trends Plant Sci ; 28(7): 752-764, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37002002

RESUMO

Atmospheric nitrogen (N2)-fixing legume trees are frequently used for the restoration of depleted, degraded, and contaminated soils. However, biological N2 fixation (BNF) can also be performed by so-called actinorhizal plants. Actinorhizal plants include a high diversity of woody species and therefore can be applied in a broad spectrum of environments. In contrast to N2-fixing legumes, the potential of actinorhizal plants for soil restoration remains largely unexplored. In this Opinion, we propose related basic research requirements for the characterization of environmental stress responses that determine the restoration potential of actinorhizal plants for depleted, degraded, and contaminated soils. We identify advantages and unexplored processes of actinorhizal plants and describe a mainly uncharted avenue of future research for this important group of plant species.


Assuntos
Fabaceae , Frankia , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Frankia/metabolismo , Simbiose/fisiologia , Fabaceae/fisiologia , Plantas , Verduras , Solo
20.
Environ Pollut ; 324: 121340, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36828354

RESUMO

Rice consumption is an essential cause of mercury (Hg) exposure for humans in Asia. However, the mechanism of Hg transport and accumulation in rice plants (Oryza sativa L.) remains unclear. Here, rice genotypes with contrasting Hg uptake and translocation abilities, i.e. H655 (high Hg-accumulator) and H767 (low Hg-accumulator), were selected from 261 genotypes. Through comparative physiological and transcriptome analyses, we investigated the processes responsible for the relationship between Hg accumulation, transport and tolerance. The results showed significant stimulation of antioxidative metabolism, particularly glutathione (GSH) accumulation, and up-regulated expression of regulatory genes of glutathione metabolism for H655, but not for H767. In addition, up-regulated expression of GSH S-transferase (GST) and OsPCS1 in H655 that catalyzes the binding of Hg and GSH, enhances the Hg detoxification capacity, while high-level expression of YSL2 in H655 enhances the transport ability for Hg. Conclusively, Hg accumulation in rice is a consequence of enhanced expression of genes related to Hg binding with GSH and Hg transport. With these results, the present study contributes to the selection of rice genotypes with limited Hg accumulation and to the mitigation of Hg migration in food chains thereby enhancing nutritional safety of Hg-polluted rice fields.


Assuntos
Mercúrio , Oryza , Humanos , Oryza/metabolismo , Mercúrio/análise , Antioxidantes/metabolismo , Glutationa/metabolismo , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA