Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Neurophysiol ; 129(6): 1468-1481, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37198134

RESUMO

Calyx terminals make afferent synapses with type I hair cells in vestibular epithelia and express diverse ionic conductances that influence action potential generation and discharge regularity in vestibular afferent neurons. Here we investigated the expression of hyperpolarization-activated current (Ih) in calyx terminals in central and peripheral zones of mature gerbil crista slices, using whole cell patch-clamp recordings. Slowly activating Ih was present in >80% calyces tested in both zones. Peak Ih and half-activation voltages were not significantly different; however, Ih activated with a faster time course in peripheral compared with central zone calyces. Calyx Ih in both zones was blocked by 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288; 100 µM), and the resting membrane potential became more hyperpolarized. In the presence of dibutyryl-cAMP (dB-cAMP), peak Ih was increased, activation kinetics became faster, and the voltage of half-activation was more depolarized compared with control calyces. In current clamp, calyces from both zones showed three different categories of firing: spontaneous firing, phasic firing where a single action potential was evoked after a hyperpolarizing pulse, or a single evoked action potential followed by membrane potential oscillations. In the absence of Ih, the latency to peak of the action potential increased; Ih produces a small depolarizing current that facilitates firing by driving the membrane potential closer to threshold. Immunostaining showed the expression of HCN2 subunits in calyx terminals. We conclude that Ih is found in calyx terminals across the crista and could influence conventional and novel forms of synaptic transmission at the type I hair cell-calyx synapse.NEW & NOTEWORTHY Calyx afferent terminals make synapses with vestibular hair cells and express diverse conductances that impact action potential firing in vestibular primary afferents. Conventional and nonconventional synaptic transmission modes are influenced by hyperpolarization-activated current (Ih), but regional differences were previously unexplored. We show that Ih is present in both central and peripheral calyces of the mammalian crista. Ih produces a small depolarizing resting current that facilitates firing by driving the membrane potential closer to threshold.


Assuntos
Células Ciliadas Vestibulares , Vestíbulo do Labirinto , Animais , Células Ciliadas Vestibulares/fisiologia , Neurônios Aferentes , Potenciais de Ação/fisiologia , Potenciais da Membrana , Mamíferos
2.
BMJ Open ; 12(7): e061823, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851031

RESUMO

INTRODUCTION: Skeletal muscle dysfunction is central to both sarcopenia and physical frailty, which are associated with a wide range of adverse outcomes including falls and fractures, longer hospital stays, dependency and the need for care. Resistance training may prevent and treat sarcopenia and physical frailty, but not everyone can or wants to exercise. Finding alternatives is critical to alleviate the burden of adverse outcomes associated with sarcopenia and physical frailty. This trial will provide proof-of-concept evidence as to whether metformin can improve physical performance in older people with sarcopenia and physical prefrailty or frailty. METHODS AND ANALYSIS: MET-PREVENT is a parallel group, double-blind, placebo-controlled proof-of-concept trial. Trial participants can participate from their own homes, including completing informed consent and screening assessments. Eligible participants with low grip strength or prolonged sit-to-stand time together with slow walk speed will be randomised to either oral metformin hydrochloride 500 mg tablets or matched placebo, taken three times a day for 4 months. The recruitment target is 80 participants from two secondary care hospitals in Newcastle and Gateshead, UK. Local primary care practices will act as participant identification centres. Randomisation will be performed using a web-based minimisation system with a random element, balancing on sex and baseline walk speed. Participants will be followed up for 4 months post-randomisation, with outcomes collected at baseline and 4 months. The primary outcome measure is the four metre walk speed at the 4-month follow-up visit. ETHICS AND DISSEMINATION: The trial has been approved by the Liverpool NHS Research Ethics Committee (20/NW/0470), the Medicines and Healthcare Regulatory Authority (EudraCT 2020-004023-16) and the UK Health Research Authority (IRAS 275219). Results will be made available to participants, their families, patients with sarcopenia, the public, regional and national clinical teams, and the international scientific community. TRIAL REGISTRATION NUMBER: ISRCTN29932357.


Assuntos
Fragilidade , Metformina , Treinamento Resistido , Sarcopenia , Idoso , Método Duplo-Cego , Fragilidade/complicações , Humanos , Metformina/uso terapêutico , Desempenho Físico Funcional , Ensaios Clínicos Controlados Aleatórios como Assunto , Sarcopenia/complicações , Sarcopenia/tratamento farmacológico , Sarcopenia/prevenção & controle
3.
Front Neurosci ; 15: 710321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34580582

RESUMO

Inner ear hair cells form synapses with afferent terminals and afferent neurons carry signals as action potentials to the central nervous system. Efferent neurons have their origins in the brainstem and some make synaptic contact with afferent dendrites beneath hair cells. Several neurotransmitters have been identified that may be released from efferent terminals to modulate afferent activity. Dopamine is a candidate efferent neurotransmitter in both the vestibular and auditory systems. Within the cochlea, activation of dopamine receptors may reduce excitotoxicity at the inner hair cell synapse via a direct effect of dopamine on afferent terminals. Here we investigated the effect of dopamine on sodium currents in acutely dissociated vestibular afferent calyces to determine if dopaminergic signaling could also modulate vestibular responses. Calyx terminals were isolated along with their accompanying type I hair cells from the cristae of gerbils (P15-33) and whole cell patch clamp recordings performed. Large transient sodium currents were present in all isolated calyces; compared to data from crista slices, resurgent Na+ currents were rare. Perfusion of dopamine (100 µM) in the extracellular solution significantly reduced peak transient Na+ currents by approximately 20% of control. A decrease in Na+ current amplitude was also seen with extracellular application of the D2 dopamine receptor agonist quinpirole, whereas the D2 receptor antagonist eticlopride largely abolished the response to dopamine. Inclusion of the phosphatase inhibitor okadaic acid in the patch electrode solution occluded the response to dopamine. The reduction in calyx sodium current in response to dopamine suggests efferent signaling through D2 dopaminergic receptors may occur via common mechanisms to decrease excitability in inner ear afferents.

4.
Oncol Lett ; 21(2): 158, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552276

RESUMO

Increased membrane type-1 matrix metalloproteinase (MT1-MMP) expression in osteosarcoma is predictive of poor prognosis and directs bone metastasis in prostate carcinoma. MT1-MMP subcellular localisation varies with oxygen tension, and, therefore, the aim of the present study was to assess protein interactions between MT1-MMP and the hypoxia inducible factors (HIF-1α and HIF-2α). MT1-MMP protein expression was investigated across a panel of cancer cell lines, including a positive and negative control. The hypoxia-induced alteration in subcellular location of MT1-MMP, HIF-1α and HIF-2α in the U2OS osteosarcoma cell line was assessed using subcellular fractionation. A proximity ligation assay was utilised to assess protein to protein interactions in the osteosarcoma U2OS and prostate carcinoma PC3 cell lines. U2OS and PC3 cells exhibited a significantly increased intra-nuclear interaction between MT1-MMP and HIF-2α in response to hypoxia. The role of this warrants further investigation as it may unveil novel opportunities to target MT1-MMP, which is of particular significance for osteosarcoma since current treatment options are limited.

5.
J Neurophysiol ; 124(2): 510-524, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667253

RESUMO

Vestibular afferent neurons convey information from hair cells in the peripheral vestibular end organs to central nuclei. Primary vestibular afferent neurons can fire action potentials at high rates and afferent firing patterns vary with the position of nerve terminal endings in vestibular neuroepithelia. Terminals contact hair cells as small bouton or large calyx endings. To investigate the role of Na+ currents (INa) in firing mechanisms, we investigated biophysical properties of INa in calyx-bearing afferents. Whole cell patch-clamp recordings were made from calyx terminals in thin slices of gerbil crista at different postnatal ages: immature [postnatal day (P)5-P8, young (P13-P15), and mature (P30-P45)]. A large transient Na+ current (INaT) was completely blocked by 300 nM tetrodotoxin (TTX) in mature calyces. In addition, INaT was accompanied by much smaller persistent Na+ currents (INaP) and distinctive resurgent Na+ currents (INaR), which were also blocked by TTX. ATX-II, a toxin that slows Na+ channel inactivation, enhanced INaP in immature and mature calyces. 4,9-Anhydro-TTX (4,9-ah-TTX), which selectively blocks Nav1.6 channels, abolished the enhanced INa in mature, but not immature, calyces. Therefore, Nav1.6 channels mediate a component of INaT and INaP in mature calyces, but are minimally expressed at early postnatal days. INaR was expressed in less than one-third of calyces at P6-P8, but expression increased with development, and in mature cristae INaR was frequently found in peripheral calyces. INaR served to increase the availability of Na+ channels following brief membrane depolarizations. In current clamp, the rate and regularity of action potential firing decreased in mature peripheral calyces following 4,9-ah-TTX application. Therefore, Nav1.6 channels are upregulated during development, contribute to INaT, INaP, and INaR, and may regulate excitability by enabling higher mean discharge rates in a subpopulation of mature calyx afferents.NEW & NOTEWORTHY Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.


Assuntos
Potenciais de Ação/fisiologia , Células Ciliadas Vestibulares/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Sódio , Tetrodotoxina/farmacologia , Nervo Vestibular/fisiologia , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Animais , Gerbillinae , Células Ciliadas Vestibulares/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6/efeitos dos fármacos , Nervo Vestibular/efeitos dos fármacos
6.
Trials ; 21(1): 179, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054508

RESUMO

BACKGROUND: Septoplasty (surgery to straighten a deviation in the nasal septum) is a frequently performed operation worldwide, with approximately 250,000 performed annually in the US and 22,000 in the UK. Most septoplasties aim to improve diurnal and nocturnal nasal obstruction. The evidence base for septoplasty clinical effectiveness is hitherto very limited. AIMS: To establish, and inform guidance for, the best management strategy for individuals with nasal obstruction associated with a deviated septum. METHODS/DESIGN: A multicentre, mixed-methods, open label, randomised controlled trial of septoplasty versus medical management for adults with a deviated septum and a reduced nasal airway. Eligible patients will have septal deflection visible at nasendoscopy and a nasal symptom score ≥ 30 on the NOSE questionnaire. Surgical treatment comprises septoplasty with or without reduction of the inferior nasal turbinate on the anatomically wider side of the nose. Medical management comprises a nasal saline spray followed by a fluorinated steroid spray daily for six months. The recruitment target is 378 patients, recruited from up to 17 sites across Scotland, England and Wales. Randomisation will be on a 1:1 basis, stratified by gender and severity (NOSE score). Participants will be followed up for 12 months post randomisation. The primary outcome measure is the total SNOT-22 score at 6 months. Clinical and economic outcomes will be modelled against baseline severity (NOSE scale) to inform clinical decision-making. The study includes a recruitment enhancement process, and an economic evaluation. DISCUSSION: The NAIROS trial will evaluate the clinical effectiveness and cost-effectiveness of septoplasty versus medical management for adults with a deviated septum and symptoms of nasal blockage. Identifying those individuals most likely to benefit from surgery should enable more efficient and effective clinical decision-making, and avoid unnecessary operations where there is low likelihood of patient benefit. TRIAL REGISTRATION: EudraCT: 2017-000893-12, ISRCTN: 16168569. Registered on 24 March 2017.


Assuntos
Tratamento Conservador/métodos , Obstrução Nasal/terapia , Septo Nasal/cirurgia , Deformidades Adquiridas Nasais/complicações , Rinoplastia/métodos , Administração Intranasal , Adulto , Tomada de Decisão Clínica/métodos , Ensaios Clínicos Fase III como Assunto , Tratamento Conservador/economia , Análise Custo-Benefício , Endoscopia , Inglaterra , Feminino , Humanos , Masculino , Estudos Multicêntricos como Assunto , Obstrução Nasal/diagnóstico , Obstrução Nasal/etiologia , Septo Nasal/diagnóstico por imagem , Septo Nasal/lesões , Deformidades Adquiridas Nasais/terapia , Seleção de Pacientes , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Rinoplastia/economia , Solução Salina/administração & dosagem , Escócia , Autorrelato/estatística & dados numéricos , Índice de Gravidade de Doença , Esteroides Fluorados/administração & dosagem , Resultado do Tratamento , País de Gales
7.
Front Cell Neurosci ; 12: 423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487736

RESUMO

The vestibular system relays information about head position via afferent nerve fibers to the brain in the form of action potentials. Voltage-gated Na+ channels in vestibular afferents drive the initiation and propagation of action potentials, but their expression during postnatal development and their contributions to firing in diverse mature afferent populations are unknown. Electrophysiological techniques were used to determine Na+ channel subunit types in vestibular calyx-bearing afferents at different stages of postnatal development. We used whole cell patch clamp recordings in thin slices of gerbil crista neuroepithelium to investigate Na+ channels and firing patterns in central zone (CZ) and peripheral zone (PZ) afferents. PZ afferents are exclusively dimorphic, innervating type I and type II hair cells, whereas CZ afferents can form dimorphs or calyx-only terminals which innervate type I hair cells alone. All afferents expressed tetrodotoxin (TTX)-sensitive Na+ currents, but TTX-sensitivity varied with age. During the fourth postnatal week, 200-300 nM TTX completely blocked sodium currents in PZ and CZ calyces. By contrast, in immature calyces [postnatal day (P) 5-11], a small component of peak sodium current remained in 200 nM TTX. Application of 1 µM TTX, or Jingzhaotoxin-III plus 200 nM TTX, abolished sodium current in immature calyces, suggesting the transient expression of voltage-gated sodium channel 1.5 (Nav1.5) during development. A similar TTX-insensitive current was found in early postnatal crista hair cells (P5-9) and constituted approximately one third of the total sodium current. The Nav1.6 channel blocker, 4,9-anhydrotetrodotoxin, reduced a component of sodium current in immature and mature calyces. At 100 nM 4,9-anhydrotetrodotoxin, peak sodium current was reduced on average by 20% in P5-14 calyces, by 37% in mature dimorphic PZ calyces, but by less than 15% in mature CZ calyx-only terminals. In mature PZ calyces, action potentials became shorter and broader in the presence of 4,9-anhydrotetrodotoxin implicating a role for Nav1.6 channels in firing in dimorphic afferents.

8.
J Neurophysiol ; 117(6): 2312-2323, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28298303

RESUMO

In the vestibular periphery neurotransmission between hair cells and primary afferent nerves occurs via specialized ribbon synapses. Type I vestibular hair cells (HCIs) make synaptic contacts with calyx terminals, which enclose most of the HCI basolateral surface. To probe synaptic transmission, whole cell patch-clamp recordings were made from calyx afferent terminals isolated together with their mature HCIs from gerbil crista. Neurotransmitter release was measured as excitatory postsynaptic currents (EPSCs) in voltage clamp. Spontaneous EPSCs were classified as simple or complex. Simple events exhibited a rapid rise time and a fast monoexponential decay (time constant < 1 ms). The remaining events, constituting ~40% of EPSCs, showed more complex characteristics. Extracellular Sr2+ greatly increased EPSC frequency, and EPSCs were blocked by the AMPA receptor blocker NBQX. The role of presynaptic Ca2+ channels was assessed by application of the L-type Ca2+ channel blocker nifedipine (20 µM), which reduced EPSC frequency. In contrast, the L-type Ca2+ channel opener BAY K 8644 increased EPSC frequency. Cyclothiazide increased the decay time constant of averaged simple EPSCs by approximately twofold. The low-affinity AMPA receptor antagonist γ-d-glutamylglycine (2 mM) reduced the proportion of simple EPSCs relative to complex events, indicating glutamate accumulation in the restricted cleft between HCI and calyx. In crista slices EPSC frequency was greater in central compared with peripheral calyces, which may be due to greater numbers of presynaptic ribbons in central hair cells. Our data support a role for L-type Ca2+ channels in spontaneous release and demonstrate regional variations in AMPA-mediated quantal transmission at the calyx synapse.NEW & NOTEWORTHY In vestibular calyx terminals of mature cristae we find that the majority of excitatory postsynaptic currents (EPSCs) are rapid monophasic events mediated by AMPA receptors. Spontaneous EPSCs are reduced by an L-type Ca2+ channel blocker and notably enhanced in extracellular Sr2+ EPSC frequency is greater in central areas of the crista compared with peripheral areas and may be associated with more numerous presynaptic ribbons in central hair cells.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Células Ciliadas Vestibulares/fisiologia , Receptores de AMPA/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Benzotiadiazinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Dipeptídeos/farmacologia , Feminino , Gerbillinae , Células Ciliadas Vestibulares/efeitos dos fármacos , Células Ciliadas Vestibulares/metabolismo , Masculino , Nifedipino/farmacologia , Quinoxalinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Estrôncio/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia
9.
Hear Res ; 338: 40-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26836968

RESUMO

During development of vestibular hair cells, K(+) conductances are acquired in a specific pattern. Functionally mature vestibular hair cells express different complements of K(+) channels which uniquely shape the hair cell receptor potential and filtering properties. In amniote species, type I hair cells (HCI) have a large input conductance due to a ubiquitous low-voltage-activated K(+) current that activates with slow sigmoidal kinetics at voltages negative to the membrane resting potential. In contrast type II hair cells (HCII) from mammalian and non-mammalian species have voltage-dependent outward K(+) currents that activate rapidly at or above the resting membrane potential and show significant inactivation. A-type, delayed rectifier and calcium-activated K(+) channels contribute to the outward K(+) conductance and are present in varying proportions in HCII. In many species, K(+) currents in HCII in peripheral locations of vestibular epithelia inactivate more than HCII in more central locations. Two types of inward rectifier currents have been described in both HCI and HCII. A rapidly activating K(+)-selective inward rectifier current (IK1, mediated by Kir2.1 channels) predominates in HCII in peripheral zones, whereas a slower mixed cation inward rectifier current (Ih), shows greater expression in HCII in central zones of vestibular epithelia. The implications for sensory coding of vestibular signals by different types of hair cells are discussed. This article is part of a Special Issue entitled .


Assuntos
Orelha Interna/fisiologia , Células Ciliadas Vestibulares/citologia , Canais de Potássio/fisiologia , Acetilcolina/química , Animais , Aves , Canais de Cálcio/fisiologia , Cátions , Membrana Celular/fisiologia , Embrião de Galinha , Fenômenos Eletrofisiológicos , Peixes , Células Ciliadas Auditivas/citologia , Humanos , Potenciais da Membrana , Camundongos , Neurônios Aferentes/citologia , Neurotransmissores/química , Óxido Nítrico/química , Técnicas de Patch-Clamp , Ranidae , Vestíbulo do Labirinto/fisiologia
10.
Front Syst Neurosci ; 9: 85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082693

RESUMO

Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

11.
J Neurophysiol ; 113(1): 264-76, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25343781

RESUMO

We developed a rodent crista slice to investigate regional variations in electrophysiological properties of vestibular afferent terminals. Thin transverse slices of the gerbil crista ampullaris were made and electrical properties of calyx terminals in central zones (CZ) and peripheral zones (PZ) compared with whole cell patch clamp. Spontaneous action potential firing was observed in 25% of current-clamp recordings and was either regular or irregular in both zones. Firing was abolished when extracellular choline replaced Na(+) but persisted when hair cell mechanotransduction channels or calyx AMPA receptors were blocked. This suggests that ion channels intrinsic to the calyx can generate spontaneous firing. In response to depolarizing voltage steps, outward K(+) currents were observed at potentials above -60 mV. K(+) currents in PZ calyces showed significantly more inactivation than currents in CZ calyces. Underlying K(+) channel populations contributing to these differences were investigated. The KCNQ channel blocker XE991 dihydrochloride blocked a slowly activating, sustained outward current in both PZ and CZ calyces, indicating the presence of KCNQ channels. Mean reduction was greatest in PZ calyces. XE991 also reduced action potential firing frequency in CZ and PZ calyces and broadened mean action potential width. The K(+) channel blocker 4-aminopyridine (10-50 µM) blocked rapidly activating, moderately inactivating currents that were more prevalent in PZ calyces. α-Dendrotoxin, a selective blocker of KV1 channels, reduced outward currents in CZ calyces but not in PZ calyces. Regional variations in K(+) conductances may contribute to different firing responses in calyx afferents.


Assuntos
Orelha Interna/fisiologia , Neurônios Aferentes/fisiologia , Potássio/metabolismo , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Antracenos/farmacologia , Células Cultivadas , Colina/metabolismo , Orelha Interna/anatomia & histologia , Orelha Interna/efeitos dos fármacos , Venenos Elapídicos/farmacologia , Feminino , Gerbillinae , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Receptores de AMPA/metabolismo , Sódio/metabolismo , Técnicas de Cultura de Tecidos
12.
Audiol Neurootol ; 18(5): 317-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24051519

RESUMO

Significant ototoxicity limits the use of aminoglycoside (AG) antibiotics. Several mechanisms may contribute to the death of both auditory and vestibular hair cells. In this study the effects of gentamicin and neomycin on K(+) currents in mature and early postnatal type I vestibular hair cells (HCI) were tested directly. The whole-cell patch clamp technique was used to assess the effects of AG and KCNQ channel modulators on K(+) currents (IK) in HCI acutely isolated from gerbil semicircular canals. Extracellular neomycin (1 mM) rapidly reduced peak outward IK by 16 ± 4% (n = 9) in mature HCI (postnatal days, P, 25-66). Gentamicin (5 mM) reduced outward IK by 16 ± 3% (n = 8). A similar reduction in outward current was seen in immature HCI (P5-9) that lacked the low-voltage-activated component of IK observed in mature cells. Intracellular application of gentamicin and neomycin also reduced IK in mature HCI. Modulators of KCNQ channels were used to probe KCNQ channel involvement. The selective KCNQ antagonist XE991 did not reduce IK and the neomycin-induced reduction in IK was not reversed by the KCNQ agonist flupirtine. Application of intracellular poly-D-lysine to sequester PIP2 did not reduce IK. Application of the K(+) channel blocker 4-aminopyridine (4-AP) strongly reduced IK, and extracellular AG in the presence of 4-AP gave no further inhibition of IK. In summary, AG significantly reduce the 4-AP-sensitive IK in early postnatal and mature HCI. K(+) current inhibition differs from that seen in outer hair cells, since it does not appear to involve PIP2 sequestration or KCNQ channels.


Assuntos
Antibacterianos/farmacologia , Gentamicinas/farmacologia , Células Ciliadas Vestibulares/efeitos dos fármacos , Neomicina/farmacologia , Canais de Potássio/fisiologia , Animais , Antracenos/farmacologia , Feminino , Gerbillinae , Células Ciliadas Vestibulares/fisiologia , Masculino , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia
13.
J Assoc Res Otolaryngol ; 13(6): 745-58, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22825486

RESUMO

Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na(+) currents, voltage-dependent outward K(+) currents and a K(Ca) current. Here, we characterize an inwardly rectifying conductance in gerbil semicircular canal calyx terminals (postnatal days 3-45), sensitive to voltage and to cyclic nucleotides. Using whole-cell patch clamp, we recorded from isolated calyx terminals still attached to their type I hair cells. A slowly activating, noninactivating current (I(h)) was seen with hyperpolarizing voltage steps negative to the resting potential. External Cs(+) (1-5 mM) and ZD7288 (100 µM) blocked the inward current by 97 and 83 %, respectively, confirming that I(h) was carried by hyperpolarization-activated, cyclic nucleotide gated channels. Mean half-activation voltage of I(h) was -123 mV, which shifted to -114 mV in the presence of cAMP. Activation of I(h) was well described with a third order exponential fit to the current (mean time constant of activation, τ, was 190 ms at -139 mV). Activation speeded up significantly (τ=136 and 127 ms, respectively) when intracellular cAMP and cGMP were present, suggesting that in vivo I(h) could be subject to efferent modulation via cyclic nucleotide-dependent mechanisms. In current clamp, hyperpolarizing current steps produced a time-dependent depolarizing sag followed by either a rebound afterdepolarization or an action potential. Spontaneous excitatory postsynaptic potentials (EPSPs) became larger and wider when I(h) was blocked with ZD7288. In a three-dimensional mathematical model of the calyx terminal based on Hodgkin-Huxley type ionic conductances, removal of I(h) similarly increased the EPSP, whereas cAMP slightly decreased simulated EPSP size and width.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Células Ciliadas Vestibulares/fisiologia , Canais Iônicos/fisiologia , Potenciais de Ação , Animais , AMP Cíclico/farmacologia , GMP Cíclico/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Gerbillinae , Masculino , Pirimidinas/farmacologia
14.
J Membr Biol ; 244(2): 81-91, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22057903

RESUMO

Afferent innervation patterns in the vestibular periphery are complex, and vestibular afferents show a large variation in their regularity of firing. Calyx fibers terminate on type I vestibular hair cells and have firing characteristics distinct from the bouton fibers that innervate type II hair cells. Whole-cell patch clamp was used to investigate ionic currents that could influence firing patterns in calyx terminals. Underlying K(Ca) conductances have been described in vestibular ganglion cells, but their presence in afferent terminals has not been investigated previously. Apamin, a selective blocker of SK-type calcium-activated K(+) channels, was tested on calyx afferent terminals isolated from gerbil semicircular canals during postnatal days 1-50. Lowering extracellular calcium or application of apamin (20-500 nM) reduced slowly activating outward currents in voltage clamp. Apamin also reduced the action potential afterhyperpolarization (AHP) in whole-cell current clamp, but only after the first two postnatal weeks. K(+) channel expression increased during the first postnatal month, and SK channels were found to contribute to the AHP, which may in turn influence discharge regularity in calyx vestibular afferents.


Assuntos
Potenciais de Ação/fisiologia , Apamina/farmacologia , Cálcio/metabolismo , Células Ciliadas Vestibulares/metabolismo , Potássio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Venenos de Abelha/química , Venenos de Abelha/farmacologia , Cálcio/farmacologia , Feminino , Gerbillinae , Células Ciliadas Vestibulares/efeitos dos fármacos , Masculino , Técnicas de Patch-Clamp , Potássio/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores
15.
J Assoc Res Otolaryngol ; 11(3): 463-76, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20407915

RESUMO

Vestibular hair cells transduce mechanical displacements of their hair bundles into an electrical receptor potential which modulates transmitter release and subsequent action potential firing in afferent neurons. To probe ionic mechanisms underlying sensory coding in vestibular calyces, we used the whole-cell patch-clamp technique to record action potentials and K(+) currents from afferent calyx terminals isolated from the semicircular canals of Mongolian gerbils. Calyx terminals showed minimal current at the mean zero-current potential (-60 mV), but two types of outward K(+) currents were identified at potentials above -50 mV. The first current was a rapidly activating and inactivating K(+) current that was blocked by 4-aminopyridine (4-AP, 2.5 mM) and BDS-I (up to 250 nM). The time constant for activation of this current decreased with membrane depolarization to a minimum value of approximately 1 ms. The 4-AP-sensitive current showed steady-state inactivation with a half-inactivation of approximately -70 mV. A second, more slowly activating current (activation time constant was 8.5 +/- 0.7 ms at -8 mV) was sensitive to TEA (30 mM). The TEA-sensitive current also showed steady-state inactivation with a half-inactivation of -95.4 +/- 1.4 mV, following 500-ms duration conditioning pulses. A combination of 4-AP and TEA blocked approximately 90% of the total outward current. In current clamp, single Na(+)-dependent action potentials were evoked following hyperpolarization to potentials more negative than the resting potential. 4-AP application increased action potential width, whereas TEA both increased the width and greatly reduced repolarization of the action potential.


Assuntos
Células Ciliadas da Ampola/metabolismo , Células Ciliadas Vestibulares/metabolismo , Potássio/metabolismo , Sinapses/metabolismo , Potenciais de Ação , Animais , Gerbillinae , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio
16.
Am J Physiol Regul Integr Comp Physiol ; 298(2): R351-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19939976

RESUMO

The rodent vestibular system is immature at birth. During the first postnatal week, vestibular type I and type II hair cells start to acquire their characteristic morphology and afferent innervation. We have studied postnatal changes in the membrane properties of type I hair cells acutely isolated from the semicircular canals (SCC) of gerbils and rats using whole cell patch clamp and report for the first time developmental changes in ionic conductances in these cells. At postnatal day (P) 5 immature hair cells expressed a delayed rectifier K(+) conductance (G(DR)) which activated at potentials above approximately -50 mV in both species. Hair cells also expressed a transient Na(+) conductance (G(Na)) with a mean half-inactivation of approximately -90 mV. At P6 in rat and P7 in gerbil, a low-voltage activated K(+) conductance (G(K,L)) was first observed and conferred a low-input resistance, typical of adult type I hair cells, on SCC type I hair cells. G(K,L) expression in hair cells increased markedly during the second postnatal week and was present in all rat type I hair cells by P14. In gerbil hair cells, G(K,L) appeared later and was present in all type I hair cells by P19. During the third postnatal week, G(Na) expression declined and was absent by the fourth postnatal week in rat and the sixth postnatal week in gerbils. Understanding the ionic changes associated with hair cell maturation could help elucidate development and regeneration mechanisms in the inner ear.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Canais de Potássio/metabolismo , Canais Semicirculares/crescimento & desenvolvimento , Canais Semicirculares/metabolismo , Canais de Sódio/metabolismo , 4-Aminopiridina/farmacologia , Envelhecimento/fisiologia , Animais , Interpretação Estatística de Dados , Eletrofisiologia , Gerbillinae , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Canais Semicirculares/citologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Vestíbulo do Labirinto/citologia , Vestíbulo do Labirinto/crescimento & desenvolvimento
17.
Pediatr Res ; 59(3): 440-4, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16492986

RESUMO

Mutations of mitochondrial DNA (mtDNA) are an important cause of genetic disease, yet rarely present in the neonatal period. Here we report the clinical, biochemical, and molecular genetic findings of an infant who died at the age of 1 mo with marked biventricular hypertrophy, aortic coarctation, and severe lactic acidosis due to a previously described but unusual mtDNA mutation, a 7-bp intragenic inversion within the mitochondrial gene encoding ND1 protein of complex I (MTND1). In direct contrast to the previous case, an adult with exercise intolerance who only harbored the mutation in muscle, the MTND1 inversion in our patient was present at high levels in several tissues including the heart, muscle, liver, and cultured skin fibroblasts. There was no evidence of the mutation or respiratory complex I defect in a muscle biopsy from the patient's mother. Transmitochondrial cytoplasmic hybrids (cybrids) containing high mutant loads of the inversion expressed the biochemical defect but apparently normal levels of the assembled complex. Our report highlights the enormous phenotypic diversity that exists among pathogenic mtDNA mutations and reemphasizes the need for appropriate genetic counseling for families affected by mtDNA disease.


Assuntos
Acidose Láctica/genética , DNA Mitocondrial/genética , NADH Desidrogenase/genética , Mutação Puntual , Acidose Láctica/mortalidade , Adulto , Coartação Aórtica/genética , Análise Mutacional de DNA , Complexo I de Transporte de Elétrons/genética , Evolução Fatal , Feminino , Humanos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Direita/genética , Lactente , Recém-Nascido
18.
J Neurophysiol ; 95(1): 26-32, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16162827

RESUMO

Na(+) currents were studied by whole cell patch clamp of chalice-shaped afferent terminals attached to type I hair cells isolated from the gerbil semicircular canal and utricle. Outward K(+) currents were blocked with intracellular Cs(+) or with extracellularly applied 20 microM linopirdine and 2.5 mM 4-aminopyridine (4-AP). With K(+) currents blocked, inward currents activated and inactivated rapidly, had a maximum mean peak amplitude of 0.92 +/- 0.60 (SD) nA (n = 24), and activated positive to -60 mV from holding potentials of -70 mV and more negative. The transient inward currents were blocked almost completely by 100 nM TTX, confirming their identity as Na(+) currents. Half-inactivation of Na(+) currents occurred at -82.6 +/- 0.9 mV, with a slope factor of 9.2 +/- 0.8 (n = 7) at room temperature. In current clamp, large overshooting action potential-like events were observed only after prior hyperpolarizing current injections. However, spontaneous currents consistent with quantal release from the hair cell were observed at holding potentials close to the zero-current potential. This is the first report of ionic conductances in calyx terminals postsynaptic to type I hair cells in the mammalian vestibular system.


Assuntos
Potenciais de Ação/fisiologia , Células Ciliadas Vestibulares/fisiologia , Neurônios Aferentes/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Terminações Pré-Sinápticas/fisiologia , Canais de Sódio/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Células Cultivadas , Gerbillinae , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Potássio/metabolismo , Sódio/metabolismo
19.
Physiol Genomics ; 19(2): 155-69, 2004 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-15316115

RESUMO

A fast inwardly rectifying current has been observed in some of the sensory cells (hair cells) of the inner ear of several species. While the current was presumed to be an IKir current, contradictory evidence existed as to whether the cloned channel actually belonged to the Kir2.0 subfamily of potassium inward rectifiers. In this paper, we report for the first time converging evidence from electrophysiological, biochemical, immunohistochemical, and genetic studies that show that the Kir2.1 channel carries the fast inwardly rectifying currents found in pigeon vestibular hair cells. Following cytoplasm extraction from single type II and multiple pigeon vestibular hair cells, mRNA was reverse transcribed, amplified, and sequenced. The open reading frame (ORF), consisting of a 1,284-bp nucleotide sequence, showed 94, 85, and 83% identity with Kir2.1 subunit sequences from chick lens, Kir2 sequences from human heart, and a mouse macrophage cell line, respectively. Phylogenetic analyses revealed that pKir2.1 formed an immediate node with hKir2.1 but not with hKir2.2-2.4. Hair cells (type I and type II) and supporting cells in the sensory epithelium reacted positively with a Kir2.1 antibody. The whole cell current recorded in oocytes and CHO cells, transfected with pigeon hair cell Kir2.1 (pKir2.1), demonstrated blockage by Ba2+ and sensitivity to changing K+ concentration. The mean single-channel linear slope conductance in transfected CHO cells was 29 pS. The open dwell time was long (approximately 300 ms at -100 mV), and the closed dwell time was short (approximately 34 ms at -100 mV). Multistates ranging from 3-6 were noted in some single-channel responses. All of the above features have been described for other Kir2.1 channels. Current clamp studies of native pigeon vestibular hair cells illustrated possible physiological roles of the channel and showed that blockage of the channel by Ba2+ depolarized the resting membrane potential by approximately 30 mV. Negative currents hyperpolarized the membrane approximately 20 mV before block but approximately 60 mV following block. RT-PCR studies revealed that the pKir2.1 channels found in pigeon vestibular hair cells were also present in pigeon vestibular nerve, vestibular ganglion, lens, neck muscle, brain (brain stem, cerebellum and optic tectum), liver, and heart.


Assuntos
Clonagem Molecular/métodos , Columbidae/genética , Regulação da Expressão Gênica/genética , Células Ciliadas Vestibulares/química , Células Ciliadas Vestibulares/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sequência de Aminoácidos/genética , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Sequência de Bases/genética , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Eletrofisiologia , Feminino , Dados de Sequência Molecular , Oócitos/química , Oócitos/metabolismo , Especificidade de Órgãos/genética , Técnicas de Patch-Clamp/métodos , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA