Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535006

RESUMO

Dementia is a significant global health issue that is exacerbated by an aging population. Imaging plays an established role in the evaluation of patients with neurocognitive disorders such as dementia. In current clinical practice, magnetic resonance imaging (MRI) and positron emission tomography (PET) are primary imaging modalities used separately but in concert to help diagnose and classify dementia. The clinical applications of PET/MRI hybrid imaging in dementia are an active area of research, particularly given the continued emergence of functional MRI (fMRI) and amyloid PET tracers. This narrative review provides a comprehensive overview of the rationale and current evidence for PET/MRI hybrid dementia imaging from 2018 to 2023. Hybrid imaging offers advantages in the accuracy of characterizing neurodegenerative disorders, and future research will need to address the cost of integrated PET/MRI systems compared to stand-alone scanners, the development of new biomarkers, and image correction techniques.

2.
Acad Radiol ; 30(12): 2973-2987, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438161

RESUMO

RATIONALE AND OBJECTIVES: Spinal osteoporotic compression fractures (OCFs) can be an early biomarker for osteoporosis but are often subtle, incidental, and underreported. To ensure early diagnosis and treatment of osteoporosis, we aimed to build a deep learning vertebral body classifier for OCFs as a critical component of our future automated opportunistic screening tool. MATERIALS AND METHODS: We retrospectively assembled a local dataset, including 1790 subjects and 15,050 vertebral bodies (thoracic and lumbar). Each vertebral body was annotated using an adaption of the modified-2 algorithm-based qualitative criteria. The Osteoporotic Fractures in Men (MrOS) Study dataset provided thoracic and lumbar spine radiographs of 5994 men from six clinical centers. Using both datasets, five deep learning algorithms were trained to classify each individual vertebral body of the spine radiographs. Classification performance was compared for these models using multiple metrics, including the area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, and positive predictive value (PPV). RESULTS: Our best model, built with ensemble averaging, achieved an AUC-ROC of 0.948 and 0.936 on the local dataset's test set and the MrOS dataset's test set, respectively. After setting the cutoff threshold to prioritize PPV, this model achieved a sensitivity of 54.5% and 47.8%, a specificity of 99.7% and 99.6%, and a PPV of 89.8% and 94.8%. CONCLUSION: Our model achieved an AUC-ROC>0.90 on both datasets. This testing shows some generalizability to real-world clinical datasets and a suitable performance for a future opportunistic osteoporosis screening tool.


Assuntos
Aprendizado Profundo , Fraturas por Compressão , Osteoporose , Fraturas da Coluna Vertebral , Masculino , Humanos , Fraturas por Compressão/diagnóstico por imagem , Estudos Retrospectivos , Densidade Óssea , Fraturas da Coluna Vertebral/diagnóstico por imagem , Osteoporose/complicações , Osteoporose/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA