Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Mater ; 34(17): 8031-8042, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36117880

RESUMO

Skin-compatible printed stretchable conductors that combine a low gauge factor with a high durability over many strain cycles are still a great challenge. Here, a graphene nanoplatelet-based colloidal ink utilizing a skin-compatible thermoplastic polyurethane (TPU) binder with adjustable rheology is developed. Stretchable conductors that remain conductive even under 100% strain and demonstrate high fatigue resistance to cyclic strains of 20-50% are realized via printing on TPU. The sheet resistances of these conductors after drying at 120 °C are as low as 34 Ω â–¡-1 mil-1. Furthermore, photonic annealing at several energy levels is used to decrease the sheet resistance to <10 Ω â–¡-1 mil-1, with stretchability and fatigue resistance being preserved and tunable. The high conductivity, stretchability, and cyclic stability of printed tracks having excellent feature definition in combination with scalable ink production and adjustable rheology bring the high-volume manufacturing of stretchable wearables into scope.

2.
Nanotechnology ; 30(37): 37LT03, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31212258

RESUMO

One-dimensional metal nanowires offer great potential in printing transparent electrodes for next-generation optoelectronic devices such as flexible displays and flexible solar cells. Printing fine patterns of metal nanowires with widths <100 µm is critical for their practical use in the devices. However, the fine printing of metal nanowires onto polymer substrates remains a major challenge owing to their unintended alignment. This paper reports on a fine-printing method for transparent silver nanowires (AgNWs) electrodes miniaturized to a width of 50 µm on ultrathin (1 µm) polymer substrate, giving a high yield of >90%. In this method, the AgNW dispersion, which is swept by a glass rod, is spontaneously deposited to the hydrophilic areas patterned on a hydrophobic-coated substrate. The alignment and accumulation of AgNWs at the pattern periphery are enhanced by employing a high sweeping rate of >3.2 mm s-1, improving electrical conductivity and pattern definition. The more aligned and more accumulated AgNWs lower the sheet resistance by a factor of up to 6.8. In addition, a high pattern accuracy ≤ 3.6 µm, which is the deviation from the pattern designs, is achieved. Quantitative analyses are implemented on the nanowire alignment to understand the nanowire geometry. This fine-printing method of the AgNW electrodes will provide great opportunities for realizing flexible and high-performance optoelectronic devices.

3.
J Ind Microbiol Biotechnol ; 37(4): 363-70, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20039190

RESUMO

An assay has been developed to accurately quantify the growth and release behaviour of bacterial biofilms on several test reference materials and coatings, using the marine bacterium Cobetia marina as a model organism. The assay can be used to investigate the inhibition of bacterial growth and release properties of many surfaces when compared to a reference. The method is based upon the staining of attached bacterial cells with the nucleic acid-binding, green fluorescent SYTO 13 stain. A strong linear correlation exists between the fluorescence of the bacterial suspension measured (RFU) using a plate reader and the total bacterial count measured with epifluorescence microscopy. This relationship allows the fluorescent technique to be used for the quantification of bacterial cells attached to surfaces. As the bacteria proliferate on the surface over a period of time, the relative fluorescence unit (RFU) measured using the plate reader also shows an increase with time. This was observed on all three test surfaces (glass, Epikote and Silastic T2) over a period of 4 h of bacterial growth, followed by a release assay, which was carried out by the application of hydrodynamic shear forces using a custom-made rotary device. Different fixed rotor speeds were tested, and based on the release analysis, 12 knots was used to provide standard shear force. The assay developed was then applied for assessing three different antifouling coatings of different surface roughness. The novel assay allows the rapid and sensitive enumeration of attached bacteria directly on the coated surface. This is the first plate reader assay technique that allows estimation of irreversibly attached bacterial cells directly on the coated surface without their removal from the surface or extraction of a stain into solution.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Microbiologia Ambiental , Halomonadaceae/efeitos dos fármacos , Halomonadaceae/crescimento & desenvolvimento , Contagem de Colônia Microbiana/métodos , Fluorescência , Corantes Fluorescentes/farmacologia , Halomonadaceae/metabolismo , Compostos Orgânicos/farmacologia , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA