Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645217

RESUMO

Differential expression (DE) analysis is a widely used method for identifying genes that are functionally relevant for an observed phenotype or biological response. However, typical DE analysis includes selection of genes based on a threshold of fold change in expression under the implicit assumption that all genes are equally sensitive to dosage changes of their transcripts. This tends to favor highly variable genes over more constrained genes where even small changes in expression may be biologically relevant. To address this limitation, we have developed a method to recalibrate each gene's differential expression fold change based on genetic expression variance observed in the human population. The newly established metric ranks statistically differentially expressed genes not by nominal change of expression, but by relative change in comparison to natural dosage variation for each gene. We apply our method to RNA sequencing datasets from rare disease and in-vitro stimulus response experiments. Compared to the standard approach, our method adjusts the bias in discovery towards highly variable genes, and enriches for pathways and biological processes related to metabolic and regulatory activity, indicating a prioritization of functionally relevant driver genes. With that, our method provides a novel view on DE and contributes towards bridging the existing gap between statistical and biological significance. We believe that this approach will simplify the identification of disease causing genes and enhance the discovery of therapeutic targets.

2.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260658

RESUMO

Understanding the role of transcription and transcription factors in cellular identity and disease, such as cancer and autoimmunity, is essential. However, comprehensive data resources for cell line-specific transcription factor-to-target gene annotations are currently limited. To address this, we developed a straightforward method to define regulons that capture the cell-specific aspects of TF binding and transcript expression levels. By integrating cellular transcriptome and transcription factor binding data, we generated regulons for four common cell lines comprising both proximal and distal cell line-specific regulatory events. Through systematic benchmarking involving transcription factor knockout experiments, we demonstrated performance on par with state-of-the-art methods, with our method being easily applicable to other cell types of interest. We present case studies using three cancer single-cell datasets to showcase the utility of these cell-type-specific regulons in exploring transcriptional dysregulation. In summary, this study provides a valuable tool and a resource for systematically exploring cell line-specific transcriptional regulations, emphasizing the utility of network analysis in deciphering disease mechanisms.

3.
Genome Med ; 13(1): 31, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618777

RESUMO

BACKGROUND: Splicing of genomic exons into mRNAs is a critical prerequisite for the accurate synthesis of human proteins. Genetic variants impacting splicing underlie a substantial proportion of genetic disease, but are challenging to identify beyond those occurring at donor and acceptor dinucleotides. To address this, various methods aim to predict variant effects on splicing. Recently, deep neural networks (DNNs) have been shown to achieve better results in predicting splice variants than other strategies. METHODS: It has been unclear how best to integrate such process-specific scores into genome-wide variant effect predictors. Here, we use a recently published experimental data set to compare several machine learning methods that score variant effects on splicing. We integrate the best of those approaches into general variant effect prediction models and observe the effect on classification of known pathogenic variants. RESULTS: We integrate two specialized splicing scores into CADD (Combined Annotation Dependent Depletion; cadd.gs.washington.edu ), a widely used tool for genome-wide variant effect prediction that we previously developed to weight and integrate diverse collections of genomic annotations. With this new model, CADD-Splice, we show that inclusion of splicing DNN effect scores substantially improves predictions across multiple variant categories, without compromising overall performance. CONCLUSIONS: While splice effect scores show superior performance on splice variants, specialized predictors cannot compete with other variant scores in general variant interpretation, as the latter account for nonsense and missense effects that do not alter splicing. Although only shown here for splice scores, we believe that the applied approach will generalize to other specific molecular processes, providing a path for the further improvement of genome-wide variant effect prediction.


Assuntos
Aprendizado Profundo , Variação Genética , Estudo de Associação Genômica Ampla , Splicing de RNA/genética , Sequência de Bases , Éxons/genética , Humanos , Íntrons/genética
4.
Biol Methods Protoc ; 5(1): bpaa022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376806

RESUMO

Non-negative matrix factorization (NMF) has been widely used for the analysis of genomic data to perform feature extraction and signature identification due to the interpretability of the decomposed signatures. However, running a basic NMF analysis requires the installation of multiple tools and dependencies, along with a steep learning curve and computing time. To mitigate such obstacles, we developed ShinyButchR, a novel R/Shiny application that provides a complete NMF-based analysis workflow, allowing the user to perform matrix decomposition using NMF, feature extraction, interactive visualization, relevant signature identification, and association to biological and clinical variables. ShinyButchR builds upon the also novel R package ButchR, which provides new TensorFlow solvers for algorithms of the NMF family, functions for downstream analysis, a rational method to determine the optimal factorization rank and a novel feature selection strategy.

5.
Nucleic Acids Res ; 47(D1): D886-D894, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30371827

RESUMO

Combined Annotation-Dependent Depletion (CADD) is a widely used measure of variant deleteriousness that can effectively prioritize causal variants in genetic analyses, particularly highly penetrant contributors to severe Mendelian disorders. CADD is an integrative annotation built from more than 60 genomic features, and can score human single nucleotide variants and short insertion and deletions anywhere in the reference assembly. CADD uses a machine learning model trained on a binary distinction between simulated de novo variants and variants that have arisen and become fixed in human populations since the split between humans and chimpanzees; the former are free of selective pressure and may thus include both neutral and deleterious alleles, while the latter are overwhelmingly neutral (or, at most, weakly deleterious) by virtue of having survived millions of years of purifying selection. Here we review the latest updates to CADD, including the most recent version, 1.4, which supports the human genome build GRCh38. We also present updates to our website that include simplified variant lookup, extended documentation, an Application Program Interface and improved mechanisms for integrating CADD scores into other tools or applications. CADD scores, software and documentation are available at https://cadd.gs.washington.edu.


Assuntos
Bases de Dados de Ácidos Nucleicos , Variação Genética , Genoma Humano , Humanos , Aprendizado de Máquina , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA