RESUMO
Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here we present the narrow-window data-independent acquisition (nDIA) strategy consisting of high-resolution MS1 scans with parallel tandem MS (MS/MS) scans of ~200 Hz using 2-Th isolation windows, dissolving the differences between data-dependent and -independent methods. This is achieved by pairing a quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer which provides >200-Hz MS/MS scanning speed, high resolving power and sensitivity, and low-ppm mass accuracy. The nDIA strategy enables profiling of >100 full yeast proteomes per day, or 48 human proteomes per day at the depth of ~10,000 human protein groups in half-an-hour or ~7,000 proteins in 5 min, representing 3× higher coverage compared with current state-of-the-art MS. Multi-shot acquisition of offline fractionated samples provides comprehensive coverage of human proteomes in ~3 h. High quantitative precision and accuracy are demonstrated in a three-species proteome mixture, quantifying 14,000+ protein groups in a single half-an-hour run.
RESUMO
Endoxifen, a secondary tamoxifen metabolite, is a potent antiestrogen exhibiting estrogen receptor alpha (ERα) binding at nanomolar concentrations. Phase I/II clinical trials identified clinical activity of Z-endoxifen (ENDX), in endocrine-refractory metastatic breast cancer as well as ERα+ solid tumors, raising the possibility that ENDX may have a second, ERα-independent, mechanism of action. An unbiased mass spectrometry approach revealed that ENDX concentrations achieved clinically with direct ENDX administration (5 µM), but not low concentrations observed during tamoxifen treatment (<0.1 µM), profoundly altered the phosphoproteome of the aromatase expressing MCF7AC1 cells with limited impact on the total proteome. Computational analysis revealed protein kinase C beta (PKCß) and protein kinase B alpha or AKT1 as potential kinases responsible for mediating ENDX effects on protein phosphorylation. ENDX more potently inhibited PKCß1 kinase activity compared to other PKC isoforms, and ENDX binding to PKCß1 was confirmed using Surface Plasma Resonance. Under conditions that activated PKC/AKT signaling, ENDX induced PKCß1 degradation, attenuated PKCß1-activated AKTSer473 phosphorylation, diminished AKT substrate phosphorylation, and induced apoptosis. ENDX's effects on AKT were phenocopied by siRNA-mediated PKCß1 knockdown or treatment with the pan-AKT inhibitor, MK-2206, while overexpression of constitutively active AKT diminished ENDX-induced apoptosis. These findings, which identify PKCß1 as an ENDX target, indicate that PKCß1/ENDX interactions suppress AKT signaling and induce apoptosis in breast cancer.
RESUMO
The growing trend toward high-throughput proteomics demands rapid liquid chromatography-mass spectrometry (LC-MS) cycles that limit the available time to gather the large numbers of MS/MS fragmentation spectra required for identification. Orbitrap analyzers scale performance with acquisition time and necessarily sacrifice sensitivity and resolving power to deliver higher acquisition rates. We developed a new mass spectrometer that combines a mass-resolving quadrupole, the Orbitrap, and the novel Asymmetric Track Lossless (Astral) analyzer. The new hybrid instrument enables faster acquisition of high-resolution accurate mass (HRAM) MS/MS spectra compared with state-of-the-art mass spectrometers. Accordingly, new proteomics methods were developed that leverage the strengths of each HRAM analyzer, whereby the Orbitrap analyzer performs full scans with a high dynamic range and resolution, synchronized with the Astral analyzer's acquisition of fast and sensitive HRAM MS/MS scans. Substantial improvements are demonstrated over previous methods using current state-of-the-art mass spectrometers.
RESUMO
Targeted mass spectrometry-based platforms have become a valuable tool for the sensitive and specific detection of protein biomarkers in clinical and research settings. Traditionally, developing a targeted assay for peptide quantification has involved manually preselecting several fragment ions and establishing a limit of detection (LOD) and a lower limit of quantitation (LLOQ) for confident detection of the target. Established thresholds such as LOD and LLOQ, however, inherently sacrifice sensitivity to afford specificity. Here, we demonstrate that machine learning can be applied to qualitative PRM assays to discriminate positive from negative samples more effectively than a traditional approach utilizing conventional methods. To demonstrate the utility of this method, we trained an ensemble machine learning model using 282 SARS-CoV-2 positive and 994 SARS-CoV-2 negative nasopharyngeal swabs (NP swab) analyzed using a targeted PRM method. This model was then validated using an independent set of 200 positive and 150 negative samples and achieved a sensitivity of 92% relative to results obtained by RT-PCR, which was superior to a traditional approach that resulted in 86.5% sensitivity when analyzing the same data. These results demonstrate that machine learning can be applied to qualitative PRM assays and results in superior performance relative to traditional methods.
Assuntos
COVID-19 , SARS-CoV-2 , Teste para COVID-19 , Humanos , Aprendizado de Máquina , Espectrometria de Massas/métodos , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Glucagon serves as an important regulatory hormone for regulating blood glucose concentration with tight feedback control exerted by insulin and glucose. There are critical gaps in our understanding of glucagon kinetics, pancreatic α cell function and intra-islet feedback network that are disrupted in type 1 diabetes. This is important for translational research applications of evolving dual-hormone (insulin + glucagon) closed-loop artificial pancreas algorithms and their usage in type 1 diabetes. Thus, it is important to accurately measure glucagon kinetics in vivo and to develop robust models of glucose-insulin-glucagon interplay that could inform next generation of artificial pancreas algorithms. METHODS: Here, we describe the administration of novel 13C15N heavy isotope-containing glucagon tracers-FF glucagon [(Phe 6 13C9,15N; Phe 22 13C9,15N)] and FFLA glucagon [(Phe 6 13C9,15N; Phe 22 13C9,15N; Leu 14 13C6,15N; Ala 19 13C3)] followed by anti-glucagon antibody-based enrichment and LC-MS/MS based-targeted assays using high-resolution mass spectrometry to determine levels of infused glucagon in plasma samples. The optimized assay results were applied for measurement of glucagon turnover in subjects with and without type 1 diabetes infused with isotopically labeled glucagon tracers. RESULTS: The limit of quantitation was found to be 1.56 pg/ml using stable isotope-labeled glucagon as an internal standard. Intra and inter-assay variability was < 6% and < 16%, respectively, for FF glucagon while it was < 5% and < 23%, respectively, for FFLA glucagon. Further, we carried out a novel isotope dilution technique using glucagon tracers for studying glucagon kinetics in type 1 diabetes. CONCLUSIONS: The methods described in this study for simultaneous detection and quantitation of glucagon tracers have clinical utility for investigating glucagon kinetics in vivo in humans.
RESUMO
COVID-19 vaccines are becoming more widely available, but accurate and rapid testing remains a crucial tool for slowing the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. Although the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains the most prevalent testing methodology, numerous tests have been developed that are predicated on detection of the SARS-CoV-2 nucleocapsid protein, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay-based approaches. The continuing emergence of SARS-CoV-2 variants has complicated these approaches, as both qRT-PCR and antigen detection methods can be prone to missing viral variants. In this study, we describe several COVID-19 cases where we were unable to detect the expected peptide targets from clinical nasopharyngeal swabs. Whole genome sequencing revealed that single nucleotide polymorphisms in the gene encoding the viral nucleocapsid protein led to sequence variants that were not monitored in the targeted assay. Minor modifications to the LC-MS/MS method ensured detection of the variants of the target peptide. Additional nucleocapsid variants could be detected by performing the bottom-up proteomic analysis of whole viral genome-sequenced samples. This study demonstrates the importance of considering variants of SARS-CoV-2 in the assay design and highlights the flexibility of mass spectrometry-based approaches to detect variants as they evolve.
Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Cromatografia Líquida , Humanos , Nucleocapsídeo/genética , Peptídeos , Proteômica , Espectrometria de Massas em TandemRESUMO
SARS-CoV-2, a novel human coronavirus, has created a global disease burden infecting > 100 million humans in just over a year. RT-PCR is currently the predominant method of diagnosing this viral infection although a variety of tests to detect viral antigens have also been developed. In this study, we adopted a SISCAPA-based enrichment approach using anti-peptide antibodies generated against peptides from the nucleocapsid protein of SARS-CoV-2. We developed a targeted workflow in which nasopharyngeal swab samples were digested followed by enrichment of viral peptides using the anti-peptide antibodies and targeted parallel reaction monitoring (PRM) analysis using a high-resolution mass spectrometer. This workflow was applied to 41 RT-PCR-confirmed clinical SARS-CoV-2 positive nasopharyngeal swab samples and 30 negative samples. The workflow employed was highly specific as none of the target peptides were detected in negative samples. Further, the detected peptides showed a positive correlation with the viral loads as measured by RT-PCR Ct values. The SISCAPA-based platform described in the current study can serve as an alternative method for SARS-CoV-2 viral detection and can also be applied for detecting other microbial pathogens directly from clinical samples.
RESUMO
Overexpression and amplification of AXL receptor tyrosine kinase (RTK) has been found in several hematologic and solid malignancies. Activation of AXL can enhance tumor-promoting processes such as cancer cell proliferation, migration, invasion and survival. Despite the important role of AXL in cancer development, a deep and quantitative mapping of its temporal dynamic signaling transduction has not yet been reported. Here, we used a TMT labeling-based quantitative proteomics approach to characterize the temporal dynamics of the phosphotyrosine proteome induced by AXL activation. We identified >1100 phosphotyrosine sites and observed a widespread upregulation of tyrosine phosphorylation induced by GAS6 stimulation. We also detected several tyrosine sites whose phosphorylation levels were reduced upon AXL activation. Gene set enrichment-based pathway analysis indicated the activation of several cancer-promoting and cell migration/invasion-related signaling pathways, including RAS, EGFR, focal adhesion, VEGFR and cytoskeletal rearrangement pathways. We also observed a rapid induction of phosphorylation of protein tyrosine phosphatases, including PTPN11 and PTPRA, upon GAS6 stimulation. The novel molecules downstream of AXL identified in this study along with the detailed global quantitative map elucidating the temporal dynamics of AXL activation should not only help understand the oncogenic role of AXL, but also aid in developing therapeutic options to effectively target AXL.
RESUMO
Nonreceptor tyrosine kinases (NRTKs) represent an important class of signaling molecules driving diverse cellular pathways. Aberrant expression and hyperphosphorylation of TNK2, an NRTK, have been implicated in multiple cancers. However, the exact proteins and cellular events that mediate phenotypic changes downstream of TNK2 are unclear. Biological systems that employ proximity-dependent biotinylation methods, such as BioID, are being increasingly used to map protein-protein interactions, as they provide increased sensitivity in discovering interaction partners. In this study, we employed stable isotope labeling with amino acids in cell culture and BioID coupled to the biotinylation site identification technology (BioSITe) method that we recently developed to quantitatively explore the interactome of TNK2. By performing a controlled comparative analysis between full-length TNK2 and its truncated counterpart, we were able to not only identify site-level biotinylation of previously well-established TNK2 binders and substrates including NCK1, NCK2, CTTN, and STAT3, but also discover several novel TNK2 interacting partners. We also performed co-immunoprecipitation and immunofluorescence analysis to validate the interaction between TNK2 and CLINT1, a novel TNK2 interacting protein. Overall, this work reveals the power of the BioSITe method coupled to BioID and highlights several molecules that warrant further exploration to assess their functional significance in TNK2-mediated signaling.
Assuntos
Proteínas Tirosina Quinases , Transdução de Sinais , Biotinilação , Ligação Proteica , Proteínas Tirosina Quinases/genéticaRESUMO
BACKGROUND: We evaluated the analytical sensitivity and specificity of 4 rapid antigen diagnostic tests (Ag RDTs) for severe acute respiratory syndrome coronavirus 2, using reverse transcription quantitative PCR (RT-qPCR) as the reference method and further characterizing samples using droplet digital quantitative PCR (ddPCR) and a mass spectrometric antigen test. METHODS: Three hundred fifty (150 negative and 200 RT-qPCR positive) residual PBS samples were tested for antigen using the BD Veritor lateral flow (LF), ACON LF, ACON fluorescence immunoassay (FIA), and LumiraDx FIA. ddPCR was performed on RT-qPCR-positive samples to quantitate the viral load in copies/mL applied to each Ag RDT. Mass spectrometric antigen testing was performed on PBS samples to obtain a set of RT-qPCR-positive, antigen-positive samples for further analysis. RESULTS: All Ag RDTs had nearly 100% specificity compared to RT-qPCR. Overall analytical sensitivity varied from 66.5% to 88.3%. All methods detected antigen in samples with viral load >1 500 000 copies/mL RNA, and detected ≥75% of samples with viral load of 500 000 to 1 500 000 copies/mL. The BD Veritor LF detected only 25% of samples with viral load between 50 000 to 500 000 copies/mL, compared to 75% for the ACON LF device and >80% for LumiraDx and ACON FIA. The ACON FIA detected significantly more samples with viral load <50 000 copies/mL compared to the BD Veritor. Among samples with detectable antigen and viral load <50 000 copies/mL, sensitivity of the Ag RDT varied between 13.0% (BD Veritor) and 78.3% (ACON FIA). CONCLUSIONS: Ag RDTs differ significantly in analytical sensitivity, particularly at viral load <500 000 copies/mL.
Assuntos
Antígenos Virais/análise , Teste para COVID-19/métodos , Testes Imediatos , Humanos , Espectrometria de Massas , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Carga ViralRESUMO
Pancreatic ductal adenocarcinoma is a recalcitrant tumor with minimal response to conventional chemotherapeutic approaches. Oncogenic signaling by activated tyrosine kinases has been implicated in cancers resulting in activation of diverse effector signaling pathways. Thus, the discovery of aberrantly activated tyrosine kinases is of great interest in developing novel therapeutic strategies in the treatment and management of pancreatic cancer. Patient-derived tumor xenografts (PDXs) in mice serve as potentially valuable preclinical models as they maintain the histological and molecular heterogeneity of the original human tumor. Here, we employed high-resolution mass spectrometry combined with immunoaffinity purification using anti-phosphotyrosine antibodies to profile tyrosine phosphoproteome across 13 pancreatic ductal adenocarcinoma PDX models. This analysis resulted in the identification of 1199 tyrosine-phosphorylated sites mapping to 704 proteins. The mass spectrometric analysis revealed widespread and heterogeneous activation of both receptor and non-receptor tyrosine kinases. Preclinical studies confirmed ephrin type-B receptor 4 (EphB4) as a potential therapeutic target based on the efficacy of human serum albumin-conjugated soluble EphB4 in mice bearing orthotopic xenografts. Immunohistochemistry-based validation using tissue microarrays from 346 patients with PDAC showed significant expression of EphB4 in >70% of patients. In summary, we present a comprehensive landscape of tyrosine phosphoproteome with EphB4 as a promising therapeutic target in pancreatic ductal adenocarcinoma.
RESUMO
BACKGROUND: The COVID-19 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has overwhelmed health systems worldwide and highlighted limitations of diagnostic testing. Several types of diagnostic tests including RT-PCR-based assays and antigen detection by lateral flow assays, each with their own strengths and weaknesses, have been developed and deployed in a short time. METHODS: Here, we describe an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Based on our discovery experiments using purified virus, recombinant viral protein and nasopharyngeal swab samples from COVID-19 positive patients, nucleocapsid protein was selected as a target antigen. We then developed an automated antibody capture-based workflow coupled to targeted high-field asymmetric waveform ion mobility spectrometry (FAIMS) - parallel reaction monitoring (PRM) assay on an Orbitrap Exploris 480 mass spectrometer. An ensemble machine learning-based model for determining COVID-19 positive samples was developed using fragment ion intensities from the PRM data. FINDINGS: The optimized targeted assay, which was used to analyze 88 positive and 88 negative nasopharyngeal swab samples for validation, resulted in 98% (95% CI = 0.922-0.997) (86/88) sensitivity and 100% (95% CI = 0.958-1.000) (88/88) specificity using RT-PCR-based molecular testing as the reference method. INTERPRETATION: Our results demonstrate that direct detection of infectious agents from clinical samples by tandem mass spectrometry-based assays have potential to be deployed as diagnostic assays in clinical laboratories, which has hitherto been limited to analysis of pure microbial cultures. FUNDING: This study was supported by DBT/Wellcome Trust India Alliance Margdarshi Fellowship grant IA/M/15/1/502023 awarded to AP and the generosity of Eric and Wendy Schmidt.
Assuntos
Teste Sorológico para COVID-19/métodos , Imunoensaio/métodos , Espectrometria de Massas/métodos , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Automação Laboratorial/métodos , Automação Laboratorial/normas , Teste Sorológico para COVID-19/normas , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Imunoensaio/normas , Aprendizado de Máquina , Espectrometria de Massas/normas , Fosfoproteínas/química , Fosfoproteínas/imunologia , Sensibilidade e EspecificidadeRESUMO
Alzheimer's disease (AD) is the most common cause of dementia and is associated with serious neurologic sequelae resulting from neurodegenerative changes. Identification of markers of early-stage AD could be important for designing strategies to arrest the progression of the disease. The brain is rich in lipids because they are crucial for signal transduction and anchoring of membrane proteins. Cerebrospinal fluid (CSF) is an excellent specimen for studying the metabolism of lipids in AD because it can reflect changes occurring in the brain. We aimed to identify CSF lipidomic alterations associated with AD, using untargeted lipidomics, carried out in positive and negative ion modes. We found CSF lipids that were significantly altered in AD cases. In addition, comparison of CSF lipid profiles between persons with mild cognitive impairment (MCI) and AD showed a strong positive correlation between the lipidomes of the MCI and AD groups. The novel lipid biomarkers identified in this study are excellent candidates for validation in a larger set of patient samples and as predictive biomarkers of AD through future longitudinal studies. Once validated, the lipid biomarkers could lead to early detection, disease monitoring and the ability to measure the efficacy of potential therapeutic interventions in AD.
Assuntos
Doença de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/metabolismo , Lipidômica/métodos , Lipídeos/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Disfunção Cognitiva/líquido cefalorraquidiano , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em TandemRESUMO
SARS-CoV-2 infection has become a major public health burden and affects many organs including lungs, kidneys, the liver, and the brain. Although the virus is readily detected and diagnosed using nasopharyngeal swabs by reverse transcriptase polymerase chain reaction (RT-PCR), detection of its presence in body fluids is fraught with difficulties. A number of published studies have failed to detect viral RNA by RT-PCR methods in urine. Although microbial identification in clinical microbiology using mass spectrometry is undertaken after culture, here we undertook a mass spectrometry-based approach that employed an enrichment step to capture and detect SARS-CoV-2 nucleocapsid protein directly from urine of COVID-19 patients without any culture. We detected SARS-CoV-2 nucleocapsid protein-derived peptides from 13 out of 39 urine samples. Further, a subset of COVID-19 positive and COVID-19 negative urine samples validated by mass spectrometry were used for the quantitative proteomics analysis. Proteins with increased abundance in urine of SARS-CoV-2 positive individuals were enriched in the acute phase response, regulation of complement system, and immune response. Notably, a number of renal proteins such as podocin (NPHS2), an amino acid transporter (SLC36A2), and sodium/glucose cotransporter 5 (SLC5A10), which are intimately involved in normal kidney function, were decreased in the urine of COVID-19 patients. Overall, the detection of viral antigens in urine using mass spectrometry and alterations of the urinary proteome could provide insights into understanding the pathogenesis of COVID-19.
Assuntos
Líquidos Corporais , COVID-19 , Antígenos Virais , Humanos , Imunidade , Espectrometria de Massas , Fosfoproteínas , RNA Viral , SARS-CoV-2RESUMO
Mammalian red blood cells (RBCs), which primarily contain hemoglobin, exemplify an elaborate maturation process, with the terminal steps of RBC generation involving extensive cellular remodeling. This encompasses alterations of cellular content through distinct stages of erythroblast maturation that result in the expulsion of the nucleus (enucleation) followed by the loss of mitochondria and all other organelles and a transition to anaerobic glycolysis. Whether there is any link between erythroid removal of the nucleus and the function of any other organelle, including mitochondria, remains unknown. Here we demonstrate that mitochondria are key to nuclear clearance. Using live and confocal microscopy and high-throughput single-cell imaging, we show that before nuclear polarization, mitochondria progressively move toward one side of maturing erythroblasts and aggregate near the nucleus as it extrudes from the cell, a prerequisite for enucleation to proceed. Although we found active mitochondrial respiration is required for nuclear expulsion, levels of mitochondrial activity identify distinct functional subpopulations, because terminally maturing erythroblasts with low relative to high mitochondrial membrane potential are at a later stage of maturation, contain greatly condensed nuclei with reduced open chromatin-associated acetylation histone marks, and exhibit higher enucleation rates. Lastly, to our surprise, we found that late-stage erythroblasts sustain mitochondrial metabolism and subsequent enucleation, primarily through pyruvate but independent of in situ glycolysis. These findings demonstrate the critical but unanticipated functions of mitochondria during the erythroblast enucleation process. They are also relevant to the in vitro production of RBCs as well as to disorders of the erythroid lineage.
Assuntos
Núcleo Celular , Eritroblastos , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Eritroblastos/metabolismo , Eritrócitos , Camundongos , MitocôndriasRESUMO
Mitochondrial carriers (MCs) mediate the passage of small molecules across the inner mitochondrial membrane (IMM), enabling regulated crosstalk between compartmentalized reactions. Despite MCs representing the largest family of solute carriers in mammals, most have not been subjected to a comprehensive investigation, limiting our understanding of their metabolic contributions. Here, we functionally characterize SFXN1, a member of the non-canonical, sideroflexin family. We find that SFXN1, an integral IMM protein with an uneven number of transmembrane domains, is a TIM22 complex substrate. SFXN1 deficiency leads to mitochondrial respiratory chain impairments, most detrimental to complex III (CIII) biogenesis, activity, and assembly, compromising coenzyme Q levels. The CIII dysfunction is independent of one-carbon metabolism, the known primary role for SFXN1 as a mitochondrial serine transporter. Instead, SFXN1 supports CIII function by participating in heme and α-ketoglutarate metabolism. Our findings highlight the multiple ways that SFXN1-based amino acid transport impacts mitochondrial and cellular metabolic efficiency.
Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Formiatos/farmacologia , Deleção de Genes , Células HEK293 , Células HeLa , Heme/biossíntese , Hemina/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Ferro/metabolismo , Ácidos Cetoglutáricos/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Especificidade por Substrato/efeitos dos fármacosRESUMO
The dynamic modification of specific serine and threonine residues of intracellular proteins by O-linked N-acetyl-ß-D-glucosamine (O-GlcNAc) mitigates injury and promotes cytoprotection in a variety of stress models. The O-GlcNAc transferase (OGT) and the O-GlcNAcase are the sole enzymes that add and remove O-GlcNAc, respectively, from thousands of substrates. It remains unclear how just two enzymes can be specifically controlled to affect glycosylation of target proteins and signaling pathways both basally and in response to stress. Several lines of evidence suggest that protein interactors regulate these responses by affecting OGT and O-GlcNAcase activity, localization, and substrate specificity. To provide insight into the mechanisms by which OGT function is controlled, we have used quantitative proteomics to define OGT's basal and stress-induced interactomes. OGT and its interaction partners were immunoprecipitated from OGT WT, null, and hydrogen peroxide-treated cell lysates that had been isotopically labeled with light, medium, and heavy lysine and arginine (stable isotopic labeling of amino acids in cell culture). In total, more than 130 proteins were found to interact with OGT, many of which change their association upon hydrogen peroxide stress. These proteins include the major OGT cleavage and glycosylation substrate, host cell factor 1, which demonstrated a time-dependent dissociation after stress. To validate less well-characterized interactors, such as glyceraldehyde 3-phosphate dehydrogenase and histone deacetylase 1, we turned to parallel reaction monitoring, which recapitulated our discovery-based stable isotopic labeling of amino acids in cell culture approach. Although the majority of proteins identified are novel OGT interactors, 64% of them are previously characterized glycosylation targets that contain varied domain architecture and function. Together these data demonstrate that OGT interacts with unique and specific interactors in a stress-responsive manner.
Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Estresse Oxidativo , Animais , Células Cultivadas , Fibroblastos/metabolismo , Camundongos , N-Acetilglucosaminiltransferases/genética , Mapas de Interação de Proteínas , ProteômicaRESUMO
BACKGROUND: The serine-threonine kinase mTORC1 (mechanistic target of rapamycin complex 1) is essential for normal cell function but is aberrantly activated in the brain in both genetic-developmental and sporadic diseases and is associated with a spectrum of neuropsychiatric symptoms. The underlying molecular mechanisms of cognitive and neuropsychiatric symptoms remain controversial. METHODS: The present study examines behaviors in transgenic models that express Rheb, the most proximal known activator of mTORC1, and profiles striatal phosphoproteomics in a model with persistently elevated mTORC1 signaling. Biochemistry, immunohistochemistry, electrophysiology, and behavior approaches are used to examine the impact of persistently elevated mTORC1 on D1 dopamine receptor (D1R) signaling. The effect of persistently elevated mTORC1 was confirmed using D1-Cre to elevate mTORC1 activity in D1R neurons. RESULTS: We report that persistently elevated mTORC1 signaling blocks canonical D1R signaling that is dependent on DARPP-32 (dopamine- and cAMP-regulated neuronal phosphoprotein). The immediate downstream effector of mTORC1, ribosomal S6 kinase 1 (S6K1), phosphorylates and activates DARPP-32. Persistent elevation of mTORC1-S6K1 occludes dynamic D1R signaling downstream of DARPP-32 and blocks multiple D1R responses, including dynamic gene expression, D1R-dependent corticostriatal plasticity, and D1R behavioral responses including sociability. Candidate biomarkers of mTORC1-DARPP-32 occlusion are increased in the brain of human disease subjects in association with elevated mTORC1-S6K1, supporting a role for this mechanism in cognitive disease. CONCLUSIONS: The mTORC1-S6K1 intersection with D1R signaling provides a molecular framework to understand the effects of pathological mTORC1 activation on behavioral symptoms in neuropsychiatric disease.
Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores de Dopamina D1/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Humanos , Fosforilação , Serina-Treonina Quinases TOR/metabolismoRESUMO
KRAS is one of the most frequently mutated genes across all cancer subtypes. Two of the most frequent oncogenic KRAS mutations observed in patients result in glycine to aspartic acid substitution at either codon 12 (G12D) or 13 (G13D). Although the biochemical differences between these two predominant mutations are not fully understood, distinct clinical features of the resulting tumors suggest involvement of disparate signaling mechanisms. When we compared the global phosphotyrosine proteomic profiles of isogenic colorectal cancer cell lines bearing either G12D or G13D KRAS mutation, we observed both shared as well as unique signaling events induced by the two KRAS mutations. Remarkably, while the G12D mutation led to an increase in membrane proximal and adherens junction signaling, the G13D mutation led to activation of signaling molecules such as nonreceptor tyrosine kinases, MAPK kinases, and regulators of metabolic processes. The importance of one of the cell surface molecules, MPZL1, which was found to be hyperphosphorylated in G12D cells, was confirmed by cellular assays as its knockdown led to a decrease in proliferation of G12D but not G13D expressing cells. Overall, our study reveals important signaling differences across two common KRAS mutations and highlights the utility of our approach to systematically dissect subtle differences between related oncogenic mutants and potentially lead to individualized treatments.