Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int Orthop ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833166

RESUMO

PURPOSE: The objective of this study was to evaluate the functional outcome during follow-up (FU) after endoscopic tenotomy for iliopsoas (IP)-cup impingement and to quantitatively analyze the hip flexion strength. METHODS: This was a monocentric, retrospective cohort study of a single surgeon series. Functional assessment was based on the modified Harris score, the Oxford score and the visual analog scale score. Strength was measured with a handheld dynamometer in the sitting and lying position. RESULTS: Thirty-six IP tenotomies for cup impingement were performed between May 2013 and November 2021. Seven (19%) patients were lost to FU. At the time of tenotomy, the mean (standard deviation) age was 62,6 (12,2) and BMI was 26,5 (4,1). The mean FU time after tenotomy to the last FU was 3,6 (0,8) years. All three outcome scores improved from preoperatively to six months postoperatively (p < 0.001). There were no significant change from six months to last FU. The minimal clinically important difference (MCID) of the modified Harris score was set at 25. 20 (69%) patients had values that exceeded the threshold at one month and six months and neutral 19 (65.5%) had values that exceeded the threshold at the last FU. The limp symmetry index concerning hip flexion strength was 63% at 90° and 40% at 30° at the last FU. CONCLUSION: Most patients significantly improved their outcome scores after endoscopic iliopsoas tenotomy, with results remaining consistently stable over time. Despite a significant loss in hip flexion strength, the majority of patients did not report any impairment of their quality of life. STUDY DESIGN: Level III, Retrospective cohort study.

2.
Adv Drug Deliv Rev ; 201: 115080, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660747

RESUMO

Autoinflammatory disorders and autoimmune diseases result from abnormal deviations of innate and adaptive immunity that heterogeneously affect organs and clinical phenotypes. Despite having etiologic and phenotypic differences, these two conditions share the onset of an aberrant inflammatory process. Targeting the main drivers controlling inflammation is useful to treat both autoimmune and autoinflammatory syndromes. TNF-α is a major player in the inflammatory immune response, and anti-TNF-α antibodies have been a revolutionary treatment in many autoimmune disorders. However, production difficulties and high development costs hinder their implementation, and accessibility to their use is still limited. Innovative strategies aimed at overcoming the limitations associated with anti-TNF-α antibodies are being explored, including RNA-based therapies. Here we summarize the central role of TNF-α in immune disorders and how anti-TNF-based immunotherapies changed the therapeutic landscape, albeit with important limitations related to side effects, tolerance, and resistance to therapies. We then outline how nanotechnology has provided the final momentum for the use of nucleic acids in the treatment of autoimmune and autoinflammatory diseases, with a focus on inflammatory bowel diseases (IBDs). The example of IBDs allows the evaluation and discussion of the nucleic acids-based treatments that have been developed, to identify the role that innovative approaches possess in view of the treatment of autoinflammatory disorders and autoimmune diseases.


Assuntos
Doenças Autoimunes , Produtos Biológicos , Doenças Inflamatórias Intestinais , Humanos , Fator de Necrose Tumoral alfa/uso terapêutico , Produtos Biológicos/uso terapêutico , RNA , Nanomedicina , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Fatores Biológicos/uso terapêutico , Inflamação , Doenças Inflamatórias Intestinais/tratamento farmacológico
3.
J Control Release ; 353: 1037-1049, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442614

RESUMO

mRNA based infectious disease vaccines have opened the venue for development of novel nucleic acids-based therapeutics. For all mRNA therapeutics dedicated delivery systems are required, where different functionalities and targeting abilities need to be optimized for the respective applications. One option for advanced formulations with tailored properties are lipid-polymer hybrid nanoparticles with complex nanostructure, which allow to combine features of several already well described nucleic acid delivery systems. Here, we explored hyaluronic acid (HA) as coating of liposome-mRNA complexes (LRCs) to investigate effects of the coating on surface charge, physicochemical characteristics and biological activity. HA was electrostatically attached to positively charged complexes, forming hybrid LRCs (HLRCs). At different N/P ratios, physico-chemical characterization of the two sets of particles showed similarity in size (around 200 nm) and mRNA binding abilities, while the presence of the HA shell conferred a negative surface charge to otherwise positive complexes. High transfection efficiency of LRCs and HLRCs in vitro has been obtained in THP-1 and human monocytes derived from PBMC, an interesting target cell population for cancer and immune related pathologies. In mice, quantitative biodistribution of radiolabeled LRC and HLRC particles, coupled with bioluminescence studies to detect the protein translation sites, hinted towards both particles' accumulation in the hepatic reticuloendothelial system (RES). mRNA translated proteins though was found mainly in the spleen, a major source for immune cells, with preference for expression in macrophages. The results showed that surface modifications of liposome-mRNA complexes can be used to fine-tune nanoparticle physico-chemical characteristics. This provides a tool for assembly of stable and optimized nanoparticles, which are prerequisite for future therapeutic interventions using mRNA-based nanomedicines.


Assuntos
Nanopartículas , Ácidos Nucleicos , Camundongos , Humanos , Animais , Lipossomos/química , Distribuição Tecidual , Leucócitos Mononucleares , Polímeros/química , Nanopartículas/química , Transfecção
4.
Methods Mol Biol ; 2566: 313-320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152262

RESUMO

Investigating at transmission electron microscopy the intracellular trafficking of hyaluronic acid-based nanoparticles remains a challenge due to their intrinsic weak electron density. Here we describe a simple protocol to stain hyaluronic acid that allows visualization of hyaluronic acid-based nanoparticles inside cells at both light and electron microscopy. By applying the critical-electrolyte-concentration Alcian blue method, these nanoparticles were observed as blue dots at bright-field microscopy or filled with fine electron dense precipitates at transmission electron microscopy.


Assuntos
Ácido Hialurônico , Nanopartículas , Azul Alciano , Corantes , Coloração e Rotulagem
5.
Nanomedicine ; 47: 102623, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309185

RESUMO

In a context of drug repurposing, pentamidine (PTM), an FDA-approved antiparasitic drug, has been proposed to reverse the splicing defects associated in myotonic dystrophy type 1 (DM1). However, clinical use of PTM is hinder by substantial toxicity, leading to find alternative delivery strategies. In this work we proposed hyaluronic acid-based nanoparticles as a novel encapsulation strategy to efficiently deliver PTM to skeletal muscles cells. In vitro studies on C2C12 myoblasts and myotubes showed an efficient nanoparticles' internalization with minimal toxicity. More interestingly, our findings evidenced for the first time the endosomal escape of hyaluronic acid-based nanocarriers. Ex vivo studies showed an efficient nanoparticles' internalization within skeletal muscle fibers. Finally, the therapeutic efficacy of PTM-loaded nanosystems to reduce the number of nuclear foci has been demonstrated in a novel DM1 in vitro model. So far, current data demonstrated the potency of hyaluronic acid-based nanosystems as efficient nanocarrier for delivering PTM into skeletal muscle and mitigate DM1 pathology.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Pentamidina , Ácido Hialurônico , Músculo Esquelético
6.
Pharmaceutics ; 13(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669654

RESUMO

Muscular Dystrophies (MDs) are a group of rare inherited genetic muscular pathologies encompassing a variety of clinical phenotypes, gene mutations and mechanisms of disease. MDs undergo progressive skeletal muscle degeneration causing severe health problems that lead to poor life quality, disability and premature death. There are no available therapies to counteract the causes of these diseases and conventional treatments are administered only to mitigate symptoms. Recent understanding on the pathogenetic mechanisms allowed the development of novel therapeutic strategies based on gene therapy, genome editing CRISPR/Cas9 and drug repurposing approaches. Despite the therapeutic potential of these treatments, once the actives are administered, their instability, susceptibility to degradation and toxicity limit their applications. In this frame, the design of delivery strategies based on nanomedicines holds great promise for MD treatments. This review focuses on nanomedicine approaches able to encapsulate therapeutic agents such as small chemical molecules and oligonucleotides to target the most common MDs such as Duchenne Muscular Dystrophy and the Myotonic Dystrophies. The challenge related to in vitro and in vivo testing of nanosystems in appropriate animal models is also addressed. Finally, the most promising nanomedicine-based strategies are highlighted and a critical view in future developments of nanomedicine for neuromuscular diseases is provided.

7.
Eur J Histochem ; 63(4)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31833331

RESUMO

The main step in the assessment of nanomaterial safety and suitability for biomedical use is the location and the dynamic tracking of nanoparticles (NPs) inside cells or tissues. To precisely investigate the uptake mechanisms and intracellular fate of NPs, transmission electron microscopy is the technique of choice; however, the detection of NPs may sometimes be problematic. In fact, while NPs containing strongly electron dense (e.g., metal) components do not require specific detection methods at the ultrastructural level, organic NPs are hardly detectable in the intracellular environment due to their intrinsic moderate electron density. In this study, the critical-electrolyte-concentration Alcian Blue method set up by Schofield et al. in 1975 was applied to track hyaluronic-acid-based NPs in muscle cells in vitro. This long-established histochemical method proved to be a powerful tool allowing to identify not only whole NPs while entering cells and moving into the cytoplasm, but also their remnants following lysosomal degradation and extrusion.


Assuntos
Azul Alciano/química , Corantes/química , Ácido Hialurônico/metabolismo , Nanopartículas/metabolismo , Animais , Linhagem Celular , Lisossomos/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Mioblastos/ultraestrutura , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA