Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cancers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497446

RESUMO

Monoplanar microbeam irradiation (MBI) and pencilbeam irradiation (PBI) are two new concepts of high dose rate radiotherapy, combined with spatial dose fractionation at the micrometre range. In a small animal model, we have explored the concept of integrating MBI or PBI as a simultaneously integrated boost (SIB), either at the beginning or at the end of a conventional, low-dose rate schedule of 5x4 Gy broad beam (BB) whole brain radiotherapy (WBRT). MBI was administered as array of 50 µm wide, quasi-parallel microbeams. For PBI, the target was covered with an array of 50 µm × 50 µm pencilbeams. In both techniques, the centre-to-centre distance was 400 µm. To assure that the entire brain received a dose of at least 4 Gy in all irradiated animals, the peak doses were calculated based on the daily BB fraction to approximate the valley dose. The results of our study have shown that the sequence of the BB irradiation fractions and the microbeam SIB is important to limit the risk of acute adverse effects, including epileptic seizures and death. The microbeam SIB should be integrated early rather than late in the irradiation schedule.

2.
Cureus ; 13(11): e19317, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35223216

RESUMO

Conventional radiotherapy is a widely used non-invasive form of treatment for many types of cancer. However, due to a low threshold in the lung for radiation-induced normal tissue damage, it is of less utility in treating lung cancer. For this reason, surgery is the preferred treatment for lung cancer, which has the detriment of being highly invasive. Non-conventional ultra-high dose rate (FLASH) radiotherapy is currently of great interest in the radiotherapy community due to demonstrations of reduced normal tissue toxicity in lung and other anatomy. This study investigates the effects of FLASH microbeam radiotherapy, which in addition to ultra-high dose rate incorporates a spatial segmentation of the radiation field, on the normal lung tissue of rats. With a focus on fibrotic damage, this work demonstrates that FLASH microbeam radiotherapy provides an order of magnitude increase in normal tissue radio-resistance compared to FLASH radiotherapy. This result suggests FLASH microbeam radiotherapy holds promise for much improved non-invasive control of lung cancer.

3.
J Synchrotron Radiat ; 27(Pt 5): 1347-1357, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876610

RESUMO

Recent trends in hard X-ray micro-computed tomography (microCT) aim at increasing both spatial and temporal resolutions. These challenges require intense photon beams. Filtered synchrotron radiation beams, also referred to as `pink beams', which are emitted by wigglers or bending magnets, meet this need, owing to their broad energy range. In this work, the new microCT station installed at the biomedical beamline ID17 of the European Synchrotron is described and an overview of the preliminary results obtained for different biomedical-imaging applications is given. This new instrument expands the capabilities of the beamline towards sub-micrometre voxel size scale and simultaneous multi-resolution imaging. The current setup allows the acquisition of tomographic datasets more than one order of magnitude faster than with a monochromatic beam configuration.


Assuntos
Microtomografia por Raio-X/instrumentação , Animais , Desenho de Equipamento , Europa (Continente) , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Pulmão/diagnóstico por imagem , Camundongos , Imagens de Fantasmas , Medula Espinal/diagnóstico por imagem , Síncrotrons
4.
Sci Rep ; 8(1): 184, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317649

RESUMO

Synchrotron-generated microplanar beams (microbeams) provide the most stereo-selective irradiation modality known today. This novel irradiation modality has been shown to control seizures originating from eloquent cortex causing no neurological deficit in experimental animals. To test the hypothesis that application of microbeams in the hippocampus, the most common source of refractory seizures, is safe and does not induce severe side effects, we used microbeams to induce transections to the hippocampus of healthy rats. An array of parallel microbeams carrying an incident dose of 600 Gy was delivered to the rat hippocampus. Immunohistochemistry of phosphorylated γ-H2AX showed cell death along the microbeam irradiation paths in rats 48 hours after irradiation. No evident behavioral or neurological deficits were observed during the 3-month period of observation. MR imaging showed no signs of radio-induced edema or radionecrosis 3 months after irradiation. Histological analysis showed a very well preserved hippocampal cytoarchitecture and confirmed the presence of clear-cut microscopic transections across the hippocampus. These data support the use of synchrotron-generated microbeams as a novel tool to slice the hippocampus of living rats in a minimally invasive way, providing (i) a novel experimental model to study hippocampal function and (ii) a new treatment tool for patients affected by refractory epilepsy induced by mesial temporal sclerosis.


Assuntos
Hipocampo/efeitos da radiação , Radiocirurgia/efeitos adversos , Animais , Hipocampo/metabolismo , Hipocampo/fisiologia , Histonas/genética , Histonas/metabolismo , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Ratos , Ratos Wistar , Síncrotrons
5.
Sci Rep ; 7(1): 14290, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085040

RESUMO

Microbeam radiation therapy is a novel preclinical technique, which uses synchrotron-generated X-rays for the treatment of brain tumours and drug-resistant epilepsies. In order to safely translate this approach to humans, a more in-depth knowledge of the long-term radiobiology of microbeams in healthy tissues is required. We report here the result of the characterization of the rat sensorimotor cortex tolerance to microradiosurgical parallel transections. Healthy adult male Wistar rats underwent irradiation with arrays of parallel microbeams. Beam thickness, spacing and incident dose were 100 or 600 µm, 400 or 1200 µm and 360 or 150 Gy, respectively. Motor performance was carried over a 3-month period. Three months after irradiation rats were sacrificed to evaluate the effects of irradiation on brain tissues by histology and immunohistochemistry. Microbeam irradiation of sensorimotor cortex did not affect weight gain and motor performance. No gross signs of paralysis or paresis were also observed. The cortical architecture was not altered, despite the presence of cell death along the irradiation path. Reactive gliosis was evident in the microbeam path of rats irradiated with 150 Gy, whereas no increase was observed in rats irradiated with 360 Gy.


Assuntos
Neoplasias Encefálicas/radioterapia , Epilepsia/radioterapia , Córtex Sensório-Motor/efeitos da radiação , Raios X/efeitos adversos , Animais , Gliose/patologia , Masculino , Paralisia/patologia , Paresia/patologia , Desempenho Psicomotor/efeitos da radiação , Doses de Radiação , Ratos , Ratos Wistar , Córtex Sensório-Motor/metabolismo , Síncrotrons , Aumento de Peso/efeitos da radiação
6.
J Synchrotron Radiat ; 23(Pt 5): 1180-90, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27577773

RESUMO

Microbeam radiation therapy (MRT) is a novel irradiation technique for brain tumours treatment currently under development at the European Synchrotron Radiation Facility in Grenoble, France. The technique is based on the spatial fractionation of a highly brilliant synchrotron X-ray beam into an array of microbeams using a multi-slit collimator (MSC). After promising pre-clinical results, veterinary trials have recently commenced requiring the need for dedicated quality assurance (QA) procedures. The quality of MRT treatment demands reproducible and precise spatial fractionation of the incoming synchrotron beam. The intensity profile of the microbeams must also be quickly and quantitatively characterized prior to each treatment for comparison with that used for input to the dose-planning calculations. The Centre for Medical Radiation Physics (University of Wollongong, Australia) has developed an X-ray treatment monitoring system (X-Tream) which incorporates a high-spatial-resolution silicon strip detector (SSD) specifically designed for MRT. In-air measurements of the horizontal profile of the intrinsic microbeam X-ray field in order to determine the relative intensity of each microbeam are presented, and the alignment of the MSC is also assessed. The results show that the SSD is able to resolve individual microbeams which therefore provides invaluable QA of the horizontal field size and microbeam number and shape. They also demonstrate that the SSD used in the X-Tream system is very sensitive to any small misalignment of the MSC. In order to allow as rapid QA as possible, a fast alignment procedure of the SSD based on X-ray imaging with a low-intensity low-energy beam has been developed and is presented in this publication.

7.
Sci Rep ; 6: 29678, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411781

RESUMO

We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 µg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.


Assuntos
Gadolínio/administração & dosagem , Gliossarcoma/radioterapia , Nanopartículas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Animais , Linhagem Celular , Meios de Contraste/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Ratos Endogâmicos F344 , Raios X
9.
J Synchrotron Radiat ; 22(4): 1035-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134808

RESUMO

The aim of this study was to validate the kilovoltage X-ray energy spectrum on the ID17 beamline at the European Synchrotron Radiation Facility (ESRF). The purpose of such validation was to provide an accurate energy spectrum as the input to a computerized treatment planning system, which will be used in synchrotron microbeam radiotherapy trials at the ESRF. Calculated and measured energy spectra on ID17 have been reported previously but recent additions and safety modifications to the beamline for veterinary trials warranted a fresh investigation. The authors used an established methodology to compare X-ray attenuation measurements in copper sheets (referred to as half value layer measurements in the radiotherapy field) with the predictions of a theoretical model. A cylindrical ionization chamber in air was used to record the relative attenuation of the X-ray beam intensity by increasing thicknesses of high-purity copper sheets. The authors measured the half value layers in copper for two beamline configurations, which corresponded to differing spectral conditions. The authors obtained good agreement between the measured and predicted half value layers for the two beamline configurations. The measured first half value layer was 1.754 ± 0.035 mm Cu and 1.962 ± 0.039 mm Cu for the two spectral conditions, compared with theoretical predictions of 1.763 ± 0.039 mm Cu and 1.984 ± 0.044 mm Cu, respectively. The calculated mean energies for the two conditions were 105 keV and 110 keV and there was not a substantial difference in the calculated percentage depth dose curves in water between the different spectral conditions. The authors observed a difference between their calculated energy spectra and the spectra previously reported by other authors, particularly at energies greater than 100 keV. The validation of the beam spectrum by the copper half value layer measurements means the authors can provide an accurate spectrum as an input to a treatment planning system for the forthcoming veterinary trials of microbeam radiotherapy to spontaneous tumours in cats and dogs.


Assuntos
Radioterapia , Síncrotrons , Europa (Continente)
10.
Phys Med ; 31(6): 642-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26032004

RESUMO

PURPOSE: Microplanar X-ray beams (microbeams) originated by synchrotron sources have been delivered to the visual brain cortex regions in rodents to create microscopically narrow lesions. The effects of microbeams mimic those generated by microsurgical subpial transections (also known as multiple subpial transections) but are obtained in a low-invasive way. METHODS: Image-guided atlas-based microbeam cortical transections have been generated on seven 1 month-old Wistar rats. An array of 10 parallel beams of 25 microns in thickness and spaced of 200 micron center-to-center was centered on the visual cortex and deposited an incident dose of 600 Gy. RESULTS: The procedure was well tolerated by rats. After recovery, rats showed regular behavior, no sign of gross visual impairment and regular weight gain. After 3 months, rats were sacrificed and brains histologically examined. Cortical transections resembling those obtained through a surgical incision were found over the irradiated region. Remarkable sparing of the cortical columns adjacent to the transections was observed. No sign of radionecrosis was evident at least at this time point. CONCLUSIONS: The visual brain cortex transected by synchrotron-generated microbeams showed an incision-like path of neuronal loss while adjacent non irradiated columns remained intact. These preliminary findings, to be further investigated also using other techniques, suggest that microbeam radiosurgery can affect the cortex at a cellular level providing a potential novel and attractive tool to study cortical function.


Assuntos
Neoplasias Encefálicas/radioterapia , Fracionamento da Dose de Radiação , Microcirurgia/métodos , Radiocirurgia/métodos , Radioterapia de Alta Energia/instrumentação , Córtex Visual/cirurgia , Animais , Desenho de Equipamento , Masculino , Radioterapia de Alta Energia/métodos , Ratos , Ratos Wistar , Síncrotrons/instrumentação , Resultado do Tratamento , Córtex Visual/patologia
11.
Sci Rep ; 5: 8514, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25686728

RESUMO

Faults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal system represents a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of ex-vivo mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with nor contrast agent nor sectioning and neither destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is very suitable for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries, in particular to resolve the entangled relationship between VN and neuronal system.


Assuntos
Imageamento Tridimensional/métodos , Microvasos , Vias Neurais , Medula Espinal/irrigação sanguínea , Medula Espinal/citologia , Animais , Camundongos , Tomografia Computadorizada por Raios X/métodos
12.
Anticancer Res ; 34(10): 5351-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275028

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is one of the deadliest cancers characterized by very limited sensitivity to chemo- and/or radiotherapy. The presence of GBM stem-like cells in the tumor might be relevant for GBM treatment resistance. AIM: To provide a proof-of-concept of the efficacy of photon activation therapy (PAT) using monochromatic synchrotron radiation (SR), in killing GBM stem cells pre-treated with cisplatin. MATERIALS AND METHODS: Irradiation was performed using a 1-8 Gy dose range and energies just above or below the platinum K-shell edge (78.39 keV) or with a conventional X-ray source. Cells were exposed to drug concentrations allowing 90% cell survival, mimicking the unfavourable tissue distribution generally achieved in GMB patients. RESULTS: a significant enhancement in cell lethality was observed using SR compared to conventional X-ray irradiation. CONCLUSION: PAT deserved to be further explored in in vivo models based on GBM stem-like cells.


Assuntos
Neoplasias Encefálicas , Cisplatino/farmacologia , Glioblastoma , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Fótons , Síncrotrons , Antineoplásicos/farmacologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Glioblastoma/radioterapia , Humanos , Radiossensibilizantes/farmacologia , Raios X
13.
J Synchrotron Radiat ; 20(Pt 5): 777-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955042

RESUMO

Among brain tumors, glioblastoma multiforme appears as one of the most aggressive forms of cancer with poor prognosis and no curative treatment available. Recently, a new kind of radio-chemotherapy has been developed using synchrotron irradiation for the photoactivation of molecules with high-Z elements such as cisplatin (PAT-Plat). This protocol showed a cure of 33% of rats bearing the F98 glioma but the efficiency of the treatment was only measured in terms of overall survival. Here, characterization of the effects of the PAT-Plat on tumor volume and tumor blood perfusion are proposed. Changes in these parameters may predict the overall survival. Firstly, changes in tumor growth of the F98 glioma implanted in the hindlimb of nude mice after the PAT-Plat treatment and its different modalities have been characterized. Secondly, the effects of the treatment on tumor blood perfusion have been observed by intravital two-photon microscopy. Cisplatin alone had no detectable effect on the tumor volume. A reduction of tumor growth was measured after a 15 Gy synchrotron irradiation, but the whole therapy (15 Gy irradiation + cisplatin) showed the largest decrease in tumor growth, indicating a synergistic effect of both synchrotron irradiation and cisplatin treatment. A high number of unperfused vessels (52%) were observed in the peritumoral area in comparison with untreated controls. In the PAT-Plat protocol the transient tumor growth reduction may be due to synergistic interactions of tumor-cell-killing effects and reduction of the tumor blood perfusion.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Cisplatino/uso terapêutico , Glioma/tratamento farmacológico , Glioma/radioterapia , Animais , Neoplasias Encefálicas/patologia , Terapia Combinada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Glioma/patologia , Irradiação Hemicorpórea , Camundongos , Camundongos Nus , Ratos , Síncrotrons , Células Tumorais Cultivadas
14.
PLoS One ; 8(1): e54960, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383014

RESUMO

We have conducted the first in-vivo experiments in pencilbeam irradiation, a new synchrotron radiation technique based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. In an animal model of adult C57 BL/6J mice we have determined technical and physiological limitations with the present technical setup of the technique. Fifty-eight animals were distributed in eleven experimental groups, ten groups receiving whole brain radiotherapy with arrays of 50 µm wide beams. We have tested peak doses ranging between 172 Gy and 2,298 Gy at 3 mm depth. Animals in five groups received whole brain radiotherapy with a center-to-center (ctc) distance of 200 µm and a peak-to-valley ratio (PVDR) of ∼ 100, in the other five groups the ctc was 400 µm (PVDR ∼ 400). Motor and memory abilities were assessed during a six months observation period following irradiation. The lower dose limit, determined by the technical equipment, was at 172 Gy. The LD50 was about 1,164 Gy for a ctc of 200 µm and higher than 2,298 Gy for a ctc of 400 µm. Age-dependent loss in motor and memory performance was seen in all groups. Better overall performance (close to that of healthy controls) was seen in the groups irradiated with a ctc of 400 µm.


Assuntos
Encéfalo/efeitos da radiação , Radioterapia/métodos , Animais , Comportamento Animal/efeitos da radiação , Encéfalo/citologia , Relação Dose-Resposta à Radiação , Dose Letal Mediana , Camundongos , Modelos Animais , Radioterapia/instrumentação , Síncrotrons
15.
PLoS One ; 8(1): e53549, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341950

RESUMO

Synchrotron-generated X-ray microplanar beams (microbeams) are characterized by the ability to deliver extremely high doses of radiation to spatially restricted volumes of tissue. Minimal dose spreading outside the beam path provides an exceptional degree of protection from radio-induced damage to the neurons and glia adjacent to the microscopic slices of tissue irradiated. The preservation of cortical architecture following high-dose microbeam irradiation and the ability to induce non-invasively the equivalent of a surgical cut over the cortex is of great interest for the development of novel experimental models in neurobiology and new treatment avenues for a variety of brain disorders. Microbeams (size 100 µm/600 µm, center-to-center distance of 400 µm/1200 µm, peak entrance doses of 360-240 Gy/150-100 Gy) delivered to the sensorimotor cortex of six 2-month-old naïve rats generated histologically evident cortical transections, without modifying motor behavior and weight gain up to 7 months. Microbeam transections of the sensorimotor cortex dramatically reduced convulsive seizure duration in a further group of 12 rats receiving local infusion of kainic acid. No subsequent neurological deficit was associated with the treatment. These data provide a novel tool to study the functions of the cortex and pave the way for the development of new therapeutic strategies for epilepsy and other neurological diseases.


Assuntos
Convulsões/prevenção & controle , Convulsões/fisiopatologia , Córtex Somatossensorial/patologia , Córtex Somatossensorial/fisiopatologia , Síncrotrons , Animais , Histonas/metabolismo , Imuno-Histoquímica , Masculino , Fosfoproteínas/metabolismo , Ratos , Ratos Wistar , Teste de Desempenho do Rota-Rod , Convulsões/patologia , Coloração e Rotulagem , Raios X
16.
Eur J Radiol ; 79(2): 323-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20732772

RESUMO

BACKGROUND: Although the quality of imaging techniques available for neurovascular angiography in the hospital environment has significantly improved over the last decades, the equipment used for clinical work is not always suited for neurovascular research in animal models. We have previously investigated the suitability of synchrotron-based K-edge digital subtraction angiography (KEDSA) after intravenous injection of iodinated contrast agent for neurovascular angiography in radiography mode in both rabbit and pig models. We now have used the KEDSA technique for the acquisition of three-dimensional images and dual energy CT. MATERIALS AND METHODS: All experiments were conducted at the biomedical beamline ID 17 of the European Synchrotron Radiation Facility (ESRF). A solid state germanium (Ge) detector was used for the acquisition of image pairs at 33.0 and 33.3 keV. Three-dimensional images were reconstructed from an image series containing 60 single images taken throughout a full rotation of 360°. CT images were reconstructed from two half-acquisitions with 720 projections each. RESULTS: The small detector field of view was a limiting factor in our experiments. Nevertheless, we were able to show that dual energy CT using the KEDSA technique available at ID 17 is suitable for neurovascular research in animal models.


Assuntos
Angiografia Digital/métodos , Angiografia Cerebral/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Meios de Contraste/administração & dosagem , Germânio , Imageamento Tridimensional , Iohexol/administração & dosagem , Iohexol/análogos & derivados , Modelos Animais , Coelhos , Suínos
17.
Eur J Radiol ; 73(3): 677-81, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19233584

RESUMO

BACKGROUND: K-edge digital subtraction angiography (KEDSA) combined with the tunability of synchrotron beam yields an imaging technique that is highly sensitive to low concentrations of contrast agents. Thus, contrast agent can be administered intravenously, obviating the need for insertion of a guided catheter to deliver a bolus of contrast agent close to the target tissue. With the high-resolution detectors used at synchrotron facilities, images can be acquired at high spatial resolution. Thus, the KEDSA appears particularly suited for studies of neurovascular pathology in animal models, where the vascular diameters are significantly smaller than in human patients. MATERIALS AND METHODS: This feasibility study was designed to test the suitability of KEDSA after intravenous injection of iodine-based contrast agent for use in a pig model. Four adult male pigs were used for our experiments. Neurovascular angiographic images were acquired using KEDSA with a solid state Germanium (Ge) detector at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. RESULTS: After intravenous injection of 0.9 ml/kg iodinated contrast agent (Xenetix), the peak iodine concentrations in the internal carotid and middle cerebral arteries reached 35 mg/ml. KEDSA images in radiography mode allowed the visualization of intracranial arteries of less than 1.5mm diameter.


Assuntos
Angiografia Digital/métodos , Angiografia Cerebral/métodos , Meios de Contraste/administração & dosagem , Iohexol/análogos & derivados , Síncrotrons , Animais , Meios de Contraste/farmacocinética , Estudos de Viabilidade , Germânio , Iohexol/administração & dosagem , Iohexol/farmacocinética , Masculino , Modelos Animais , Suínos
18.
J Synchrotron Radiat ; 16(Pt 4): 477-83, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19535860

RESUMO

The purpose of this study is to measure the effects of a tomographic synchrotron irradiation on healthy mouse brain. The cerebral cortexes of healthy nude mice were irradiated with a monochromatic synchrotron beam of 79 keV at a dose of 15 Gy in accordance with a protocol of photoactivation of cisplatin previously tested in our laboratory. Forty-eight hours, one week and one month after irradiation, the blood brain barrier (BBB) permeability was measured in the irradiated area with intravital multiphoton microscopy using fluorescent dyes with molecular weights of 4 and 70 kDa. Vascular parameters and gliosis were also assessed using quantitative immunohistochemistry. No extravasation of the fluorescent dyes was observed in the irradiated area at any measurement time (48 h, 1 week, 1 month). It appears that the BBB remains impermeable to molecules with a molecular weight of 4 kDa and above. The vascular density and vascular surface were unaffected by irradiation and no gliosis was induced. These findings suggest that a 15 Gy/79 keV synchrotron irradiation does not induce important damage on brain vasculature and tissue on the short term following irradiation.


Assuntos
Barreira Hematoencefálica/efeitos da radiação , Encéfalo/irrigação sanguínea , Encéfalo/efeitos da radiação , Animais , Membrana Basal/química , Encéfalo/patologia , Colágeno Tipo IV/análise , Feminino , Proteína Glial Fibrilar Ácida/análise , Gliose/patologia , Imuno-Histoquímica , Camundongos , Camundongos Nus , Dosagem Radioterapêutica , Síncrotrons
19.
Rev Sci Instrum ; 79(8): 083902, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19044359

RESUMO

The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%.


Assuntos
Espectrofotometria/instrumentação , Calibragem , Cristalização , Diamante/química , Desenho de Equipamento , Interferometria , Nitrogênio/química , Óptica e Fotônica , Fenômenos Físicos , Espalhamento de Radiação , Silício/química , Temperatura , Vibração , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA