Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 34(48): 16103-16, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25429151

RESUMO

Animals must distinguish behaviorally relevant patterns of sensory stimulation from those that are attributable to their own movements. In principle, this distinction could be made based on internal signals related to motor commands, known as corollary discharge (CD), sensory feedback, or some combination of both. Here we use an advantageous model system--the electrosensory lobe (ELL) of weakly electric mormyrid fish--to directly examine how CD and proprioceptive feedback signals are transformed into negative images of the predictable electrosensory consequences of the fish's motor commands and/or movements. In vivo recordings from ELL neurons and theoretical modeling suggest that negative images are formed via anti-Hebbian plasticity acting on random, nonlinear mixtures of CD and proprioception. In support of this, we find that CD and proprioception are randomly mixed in spinal mossy fibers and that properties of granule cells are consistent with a nonlinear recoding of these signals. The mechanistic account provided here may be relevant to understanding how internal models of movement consequences are implemented in other systems in which similar components (e.g., mixed sensory and motor signals and synaptic plasticity) are found.


Assuntos
Retroalimentação Fisiológica/fisiologia , Movimento/fisiologia , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/fisiologia , Animais , Peixe Elétrico , Feminino , Previsões , Masculino , Distribuição Aleatória
2.
Neuron ; 82(4): 896-907, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24853945

RESUMO

The capacity to predict the sensory consequences of movements is critical for sensory, motor, and cognitive function. Though it is hypothesized that internal signals related to motor commands, known as corollary discharge, serve to generate such predictions, this process remains poorly understood at the neural circuit level. Here we demonstrate that neurons in the electrosensory lobe (ELL) of weakly electric mormyrid fish generate negative images of the sensory consequences of the fish's own movements based on ascending spinal corollary discharge signals. These results generalize previous findings describing mechanisms for generating negative images of the effects of the fish's specialized electric organ discharge (EOD) and suggest that a cerebellum-like circuit endowed with associative synaptic plasticity acting on corollary discharge can solve the complex and ubiquitous problem of predicting sensory consequences of movements.


Assuntos
Cerebelo/citologia , Órgão Elétrico/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Biofísica , Calbindinas/metabolismo , Cerebelo/fisiologia , Dendritos/fisiologia , Peixe Elétrico , Estimulação Elétrica , Lateralidade Funcional , Fibras Nervosas/fisiologia , Neurônios/citologia , Técnicas de Patch-Clamp
3.
Sci Am ; 305(2): 18, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21827112
4.
Curr Opin Neurobiol ; 21(4): 602-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21704507

RESUMO

This review focuses on recent progress in understanding mechanisms for filtering self-generated sensory signals in cerebellum-like circuits in fish and mammals. Recent in vitro studies in weakly electric gymnotid fish have explored the interplay among anti-Hebbian plasticity, synaptic dynamics, and feedforward inhibition in canceling self-generated electrosensory inputs. Studies of the mammalian dorsal cochlear nucleus have revealed multimodal integration and anti-Hebbian plasticity, suggesting that this circuit may adaptively filter incoming auditory information. In vivo studies in weakly electric mormryid fish suggest a key role for granule cell coding in sensory filtering. The clear links between synaptic plasticity and systems level sensory filtering in cerebellum-like circuits may provide insights into hypothesized adaptive filtering functions of the cerebellum itself.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Filtro Sensorial/fisiologia , Animais , Peixe Elétrico/fisiologia , Órgão Elétrico/citologia , Plasticidade Neuronal
6.
Sci Am ; 305(6): 21, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22214121
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA