Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Heliyon ; 9(12): e23051, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149208

RESUMO

Objectives: This study aimed at identifying biomarkers in the temporomandibular joint (TMJ) synovial tissue analysing 28 extra cellular matrix proteins in TMJ diseased patients, classified with either general joint hypermobility (GJH) or normal joint mobility (NJM), and to compile clinical and protein characterisation to reveal potential surgical predictive factors. Study design: A prospective observational cohort study including 97 consecutive patients scheduled for TMJ surgery was performed. Joint mobility and several other predefined clinical variables were recorded. Synovial tissue was harvested during surgery followed by examination using multi-analytic profiling. A multivariate quantile regression model was used for analysis purposes. Results: The GJH/NJM ratio was 2:5. The GJH cohort were younger (P = 0.001) and more likely to be women (P = 0.026) compared to the NJM cohort. None of the protein concentrations could be correlated to joint mobility in the multivariate regression model, but often to the variable TMJ diagnosis. The surgical outcome after the six-month follow-up were equal between GJH and NJM patients. Conclusions: GJH was more common in the study cohort compared to general population frequencies, but GJH was not a negative factor for surgical outcome. Young age and female gender correlated to GJH. No TMJ biomarkers were GJH specific, and the results suggested that TMJ diagnosis more strongly correlated to the protein profile compared to GJH and the other investigated variables.

2.
JBMR Plus ; 7(9): e10792, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701151

RESUMO

In vitro models of primary human osteocytes embedded in natural mineralized matrix without artificial scaffolds are lacking. We have established cell culture conditions that favored the natural 3D orientation of the bone cells and stimulated the cascade of signaling needed for primary human osteoblasts to differentiate into osteocytes with the characteristically phenotypical dendritic network between cells. Primary human osteoblasts cultured in a 3D rotating bioreactor and incubated with a combination of vitamins A, C, and D for up to 21 days produced osteospheres resembling native bone. Osteocyte-like cells were identified as entrapped, stellate-shaped cells interconnected through canaliculi embedded in a structured, mineralized, collagen matrix. These cells expressed late osteoblast and osteocyte markers such as osteocalcin (OCN), podoplanin (E11), dentin matrix acidic phosphoprotein 1 (DMP1), and sclerostin (SOST). Organized collagen fibrils, observed associated with the cell hydroxyapatite (HAp) crystals, were found throughout the spheroid and in between the collagen fibrils. In addition to osteocyte-like cells, the spheroids consisted of osteoblasts at various differentiation stages surrounded by a rim of cells resembling lining cells. This resemblance to native bone indicates a model system with potential for studying osteocyte-like cell differentiation, cross-talk between bone cells, and the mineralization process in a bonelike structure in vitro without artificial scaffolds. In addition, natural extracellular matrix may allow for the study of tissue-specific biochemical, biophysical, and mechanical properties. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
Clin Oral Investig ; 27(9): 5203-5215, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37434075

RESUMO

OBJECTIVES: This study aimed to identify disease-related markers in persistent apical periodontitis (PAP) biopsies and examine whether these were associated with comorbidities like rheumatoid arthritis (RA) and cardiovascular diseases (CVD). MATERIALS AND METHOD: The levels of the cytokines/chemokines GM-CSF, IFN-γ, IL-2, IL-6, IL-9, IL-10, IL-13, IL-15, IL-17E/IL-25, IL-21, IL-23, IL-27, IL-28A/IFN -λ2, IL-33, MIP-3α/CCL20, and TNF-α were determined in lesions from patients with PAP (n = 20) and compared to healthy bone samples (n = 20). RESULTS: We identified eleven cytokines to be differently expressed, and among them, IL-2, IL-6, IL-17E, IL-21, and IL-27 appeared to drive the discrepancy between the disease and healthy groups. The levels of T follicular helper (Tfh) cell promoting cytokines (IL-21, IL-6, IL-27) were enhanced while T helper (Th) 1 cell promoting cytokine (IL-2), Th2 cell promoting cytokine (IL-13), and Th17 cell promoting cytokine (IL-17E) were reduced in the PAP group. The data also indicate that Tfh cell differentiation (IL-21), along with Th1 (GM-CSF, IFNγ), Th2 (IL-13), and Th17 (GM-CSF) cell differentiation, might be increased in the subpopulation of patients suffering from RA, whereas no differences were found in patients with CVD. CONCLUSIONS: Levels of cytokines/chemokines in PAP were identified, and cluster analyzes indicated that these markers may be associated with the differentiation of different T cell populations. Patients with PAP and RA comorbidities showed elevated levels of markers reinforcing this association. CLINICAL RELEVANCE: Molecular analyses of PAP may result in identification of prognostic markers.


Assuntos
Artrite Reumatoide , Interleucina-27 , Humanos , Citocinas , Interleucina-17 , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-13 , Interleucina-2 , Interleucina-6 , Quimiocinas
4.
Clin Oral Investig ; 27(9): 5073-5082, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37410152

RESUMO

OBJECTIVE: The influence of radiation backscatter from titanium on DNA damage and migration capacity of human osteoblasts (OBs) and mesenchymal stem cells (MSCs) may be critical for the osseointegration of dental implants placed prior to radiotherapy. In order to evaluate effects of radiation backscatter, the immediate DNA damage and migration capacity of OBs and MSCs cultured on titanium or plastic were compared after exposure to ionizing irradiation. MATERIALS AND METHODS: Human OBs and MSCs were seeded on machined titanium, moderately rough fluoride-modified titanium, or tissue culture polystyrene, and irradiated with nominal doses of 2, 6, 10, or 14 Gy. Comet assay was performed immediately after irradiation, while a scratch wound healing assay was initiated 24 h post-irradiation. Fluorescent live cell imaging documented the migration. RESULTS: DNA damage increased with higher dose and with backscatter from titanium, and MSCs were significantly more affected than OBs. All doses of radiation accelerated the cell migration on plastic, while only the highest dose of 10 Gy inhibited the migration of both cell types on titanium. CONCLUSIONS: High doses (10 Gy) of radiation inhibited the migration capacity of both cell types on titanium, whereas lower doses (2 and 6 Gy) did not affect the migration of either OBs or MSCs. CLINICAL RELEVANCE: Fractionated doses of 2 Gy/day, as distributed in conventional radiotherapy, appear not to cause severe DNA damage or disturb the migration of OBs or MSCs during osseointegration of dental implants.


Assuntos
Implantes Dentários , Humanos , Titânio/farmacologia , Radiação Ionizante , Movimento Celular , Plásticos
5.
Front Mol Biosci ; 10: 1200354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388244

RESUMO

Background: Ovarian Serous Adenocarcinoma is a malignant tumor originating from epithelial cells and one of the most common causes of death from gynecological cancers. The objective of this study was to develop a prediction model based on extracellular matrix proteins, using artificial intelligence techniques. The model aimed to aid healthcare professionals to predict the overall survival of patients with ovarian cancer (OC) and determine the efficacy of immunotherapy. Methods: The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) data collection was used as the study dataset, whereas the TCGA-Pancancer dataset was used for validation. The prognostic importance of 1068 known extracellular matrix proteins for OC were determined by the Random Forest algorithm and the Lasso algorithm establishing the ECM risk score. Based on the gene expression data, the differences in mRNA abundance, tumour mutation burden (TMB) and tumour microenvironment (TME) between the high- and low-risk groups were assessed. Results: Combining multiple artificial intelligence algorithms we were able to identify 15 key extracellular matrix genes, namely, AMBN, CXCL11, PI3, CSPG5, TGFBI, TLL1, HMCN2, ESM1, IL12A, MMP17, CLEC5A, FREM2, ANGPTL4, PRSS1, FGF23, and confirm the validity of this ECM risk score for overall survival prediction. Several other parameters were identified as independent prognostic factors for OC by multivariate COX analysis. The analysis showed that thyroglobulin (TG) targeted immunotherapy was more effective in the high ECM risk score group, while the low ECM risk score group was more sensitive to the RYR2 gene-related immunotherapy. Additionally, the patients with low ECM risk scores had higher immune checkpoint gene expression and immunophenoscore levels and responded better to immunotherapy. Conclusion: The ECM risk score is an accurate tool to assess the patient's sensitivity to immunotherapy and forecast OC prognosis.

6.
Eur J Orthod ; 45(6): 842-853, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37209709

RESUMO

OBJECTIVES: Positive effects of irisin on osteogenic differentiation of periodontal ligament (PDL) cells have been identified previously, this study aims to examine its effect on orthodontic tooth movement (OTM) in vivo. MATERIALS AND METHODS: The maxillary right first molars of male Wistar rats (n = 21) were moved mesially for 14 days, with submucosal injection of two dosages of irisin (0.1 or 1 µg) or phosphate-buffered saline (control) every third day. OTM was recorded by feeler gauge and micro-computed tomography (µCT). Alveolar bone and root volume were analysed using µCT, and plasma irisin levels by ELISA. Histological characteristics of PDL tissues were examined, and the expression of collagen type I, periostin, osteocalcin (OCN), von Willebrand factor (vWF) and fibronectin type III domain-containing protein 5 (FNDC5) in PDL was evaluated by immunofluorescence staining. RESULTS: Repeated 1 µg irisin injections suppressed OTM on days 6, 9, and 12. No significant differences were observed in OTM in the 0.1 µg irisin group, or in bone morphometric parameters, root volume or plasma irisin, compared to control. Resorption lacunae and hyalinization were found at the PDL-bone interface on the compression side in the control, whereas they were scarce after irisin administration. The expression of collagen type I, periostin, OCN, vWF, and FNDC5 in PDL was enhanced by irisin administration. LIMITATIONS: The feeler gauge method may overestimate OTM. CONCLUSIONS: Submucosal irisin injection reduced OTM by enhancing osteogenic potential of PDL, and this effect was more significant on the compression side.


Assuntos
Fibronectinas , Osteogênese , Ratos , Masculino , Animais , Ratos Wistar , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Ligamento Periodontal/metabolismo , Técnicas de Movimentação Dentária/métodos , Microtomografia por Raio-X/métodos , Colágeno Tipo I , Fator de von Willebrand/metabolismo , Osteoclastos
7.
Biomater Investig Dent ; 10(1): 2209116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206163

RESUMO

In head and neck cancer patients receiving dental implants prior to radiotherapy, backscatter from titanium increases the radiation dose close to the surface, and may affect the osseointegration. The dose-dependent effects of ionizing radiation on human osteoblasts (hOBs) were investigated. The hOBs were seeded on machined titanium, moderately rough fluoride-modified titanium, and tissue culture polystyrene, and cultured in growth- or osteoblastic differentiation medium (DM). The hOBs were exposed to ionizing γ-irradiation in single doses of 2, 6 or 10 Gy. Twenty-one days post-irradiation, cell nuclei and collagen production were quantified. Cytotoxicity and indicators of differentiation were measured and compared to unirradiated controls. Radiation with backscatter from titanium significantly reduced the number of hOBs but increased the alkaline phosphatase activity in both types of medium when adjusted to the relative cell number on day 21. Irradiated hOBs on the TiF-surface produced similar amounts of collagen as unirradiated controls when cultured in DM. The majority of osteogenic biomarkers significantly increased on day 21 when the hOBs had been exposed to 10 Gy, while the opposite or no effect was observed after lower doses. High doses reinforced with backscatter from titanium resulted in smaller but seemingly more differentiated subpopulations of osteoblasts.

8.
Sci Signal ; 16(771): eadd0509, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749824

RESUMO

Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/metabolismo , Canais de Cálcio/metabolismo , Aminoácidos/metabolismo , Mutação , Retículo Endoplasmático/metabolismo , Molécula 1 de Interação Estromal/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Proteína ORAI1/metabolismo , Cálcio/metabolismo
9.
J Periodontal Res ; 58(2): 336-349, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36625247

RESUMO

BACKGROUND: Irisin is expressed in human periodontal ligament (hPDL), and its administration enhances growth, migration and matrix deposition in hPDL cells cultured in monolayers in vitro. OBJECTIVES: To identify whether irisin affects the gene expression patterns directing the morphology, mechanical properties, extracellular matrix (ECM) formation, osteogenic activity and angiogenic potential in hPDL cell spheroids cultured in 3D. MATERIALS AND METHODS: Spheroids of primary human hPDL cells were generated in a rotational 3D culture system and treated with or without irisin. The gene expression patterns were evaluated by Affymetrix microarrays. The morphology of the spheroids was characterized using histological staining. Mechanical properties were quantified by nanoindentation. The osteogenic and angiogenic potential of spheroids were assessed through immunofluorescence staining for collagen type I, periostin fibronectin and von Willebrand factor (vWF), and mRNA expression of osteogenic markers. The secretion of multiple myokines was evaluated using Luminex immunoassays. RESULTS: Approximately 1000 genes were differentially expressed between control and irisin-treated groups by Affymetrix. Several genes related to ECM organization were differentially expressed, and multiple deubiquitinating enzymes were upregulated in the irisin-exposed samples analyzed. These represent cellular and molecular mechanisms indicative of a role for irisin in tissue remodeling. Irisin induced a rim-like structure on the outer region of the hPDL spheroids, ECM-related protein expression and the stiffness of the spheroids were enhanced by irisin. The expression of osteogenic and angiogenetic markers was increased by irisin. CONCLUSIONS: Irisin altered the morphology in primary hPDL cell-derived spheroids, enhanced its ECM deposition, mechanical properties, differentiation and remodeling potential.


Assuntos
Diferenciação Celular , Matriz Extracelular , Fibronectinas , Ligamento Periodontal , Humanos , Células Cultivadas , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/farmacologia , Osteogênese/genética , Ligamento Periodontal/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas de Cultura de Células em Três Dimensões
10.
J Endod ; 49(1): 4-17, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270575

RESUMO

INTRODUCTION: The conventional treatment for irreversibly inflamed or necrotic teeth is root canal treatment or apexification. Regenerative endodontics aims to regenerate the damaged "pulp-like" tissue, which can preserve the teeth' vitality and sensitivity while avoiding necrosis. The main clinical benefit is root maturation. The "pulp-like" tissue does not refer to regenerated pulp tissue with an odontoblastic layer or the formation of pulp-dentin complexes. The cell homing technique is built on endogenous stem cells and their capacity to regenerate tissue. Cell homing refers to endogenous cells' migration or infiltration into the cite when stimulated by physiochemical or biological stimuli or by passive flow with a blood clot from the apical tissue. Its Regenerative Endodontic Procedures success criteria are defined by the American Association of Endodontists. The purpose of this article is to provide an overview of vital pulp tissue and various strategies to promote regeneration of damaged pulp tissue. The cell homing technique will be reviewed through clinical trials. METHODS: We performed a comprehensive literature review on a total of nine clinical trials of regenerative endodontics using the cell-homing technique based on three databases and duplicate manuscripts were removed. RESULTS: Regenerative endodontics using the cell-homing technique shows promising results that can be translated into clinical practice. However, a favorable result was observed in immature teeth, and the results are contradictory in mature teeth. CONCLUSION: Regeneration therapy is an attractive new alternative to conventional endodontic treatments. Preservation of vitality and continuation of root development in damaged teeth would be a clear advantage.


Assuntos
Endodontia , Endodontia Regenerativa , Humanos , Necrose da Polpa Dentária/terapia , Ápice Dentário , Apexificação/métodos , Polpa Dentária , Tratamento do Canal Radicular/métodos , Regeneração
11.
Cells ; 11(13)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805079

RESUMO

Combining biomaterial scaffolds with cells serves as a promising strategy for engineering critical size defects; however, homogenous cellular growth within large scaffolds is challenging. Mechanical stimuli can enhance bone regeneration by modulating cellular growth and differentiation. Here, we compare dynamic seeding in a perfusion flow bioreactor with static seeding for a synthetic bone scaffold for up to 21 days using the cell line MC3T3-E1 and primary human osteoblast, confocal laser scanning microscopy, and real-time reverse transcriptase-polymerase chain reaction. The secretion of bone-related proteins was quantified using multiplex immunoassays. Dynamic culture improved cellular distribution through the TiO2 scaffold and induced a five-fold increase in cell number after 21 days. The relative mRNA expression of osteopontin of MC3T3-E1 was 40-fold enhanced after 7 and 21 days at a flow rate of 0.08 mL/min, and that of collagen type I alpha I expression was 18-fold after 21 days. A flow rate of 0.16 mL/min was 10-fold less effective. Dynamic culture increased the levels of dickkopf-related protein 1 (60-fold), osteoprotegrin (29-fold), interleukin-6 (23-fold), interleukin-8 (36-fold), monocyte chemoattractant protein 1 (28-fold) and vascular endothelial growth factor (6-fold) in the medium of primary human osteoblasts after 21 days compared to static seeding. The proposed method may have clinical potential for bone tissue engineering.


Assuntos
Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular , Reatores Biológicos , Humanos , Osteoblastos/metabolismo , Perfusão , Engenharia Tecidual/métodos , Titânio , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Cancers (Basel) ; 14(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454778

RESUMO

Testicular Germ Cell Tumour (TGCT) is one of the most common tumours in young men. Increasing evidence shows that the extracellular matrix has a key role in the prognosis and metastasis of various human cancers. This study analysed the relationship between the matrix protein ameloblastin (AMBN) and potential biological markers associated with TGCT diagnosis and prognosis. The relationship between AMBN and TGCT prognosis was determined by bioinformatic analysis using the expression profiles of three RNAs (long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs) from The Cancer Genome Atlas (TCGA) database, and available clinical information of the corresponding patients. Prediction and validation of competitive endogenous RNA (ceRNA) regulatory networks related to AMBN was performed. AMBN and its associated ceRNA regulatory network were found to be related to the recurrence of TGCT, and LINC02701 may be used as a diagnostic factor in TGCT. Furthermore, we identified PELATON (Plaque Enriched LncRNA In Atherosclerotic And Inflammatory Bowel Macrophage Regulation) as an independent prognostic factor for TGCT progression-free interval.

14.
Arch Oral Biol ; 124: 105061, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33508625

RESUMO

OBJECTIVE: To examine the expression and regulation of fibronectin type III domain-containing protein 5/irisin (FNDC5/irisin) in primary human periodontal ligament (hPDL) cells, dental pulp stem cells (hDPCs) and osteoblasts (hOBs). METHODS: FNDC5/irisin was identified in sections of paraffin embedded rat maxillae, cryo-sections of 3D cultured spheroids hPDL cells, hDPCs and hOBs, 2D cultured hPDL cells, hDPCs and hOBs by immunohistochemistry. The expression of FNDC5/irisin was identified by qPCR, followed by sequencing of the qPCR product. Regulation of FNDC5/irisin expression in hPDL cells, hDPCs and hOBs were evaluated after administration of different concentrations of irisin and all-trans retinoic acid (ATRA). qPCR and ELISA were used to identify expression and secretion of FNDC5/irisin in odontoblast-like differentiation of hDPCs. RESULTS: FNDC5/irisin was confirmed to be present in rat periodontium and dental pulp regions, as well as in 2D and 3D cultured hPDL cells, hDPCs and hOBs. BLAST analyses verified the generated nucleotide alignments matched human FNDC5/irisin. FNDC5/irisin gene expression was enhanced during odontoblast-like differentiation of hDPCs whereas the secretion of the protein was decreased compared to control. The protein signals in rat periodontal and pulpal tissues were higher than that of alveolar bone, and the expression of FNDC5/irisin was differently regulated by recombinant irisin and ATRA in hPDL cells and hDPCs compared to hOBs. CONCLUSIONS: FNDC5/irisin expression was verified in rodent periodontium and dental pulp, and in hPDL cells, hDPCs and hOBs. The FNDC5/irisin expression was regulated by recombinant irisin and ATRA. Finally, expression and secretion of FNDC5/irisin were affected during odontoblast-like differentiation of hDPCs.


Assuntos
Polpa Dentária , Ligamento Periodontal , Animais , Diferenciação Celular , Células Cultivadas , Fibronectinas , Humanos , Osteoblastos , Ratos , Células-Tronco
15.
JBMR Plus ; 4(9): e10394, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995695

RESUMO

Rotational culture promotes primary human osteoblasts (hOBs) to form three-dimensional (3D) multicellular spheroids with bone tissue-like structure without any scaffolding material. Cell-based bone models enable us to investigate the effect of different agents on the mechanical strength of bone. Given that low dietary intake of both vitamin D and K is negatively associated with fracture risk, we aimed to assess the effect of these vitamins in this system. Osteospheres of hOBs were generated with menaquinone-4 (MK-4; 10µM) and 25-hydroxyvitamin D3 [25(OH)D3; 0.01µM], alone and in combination, or without vitamins. The mechanical properties were tested by nanoindentation using a flat-punch compression method, and the mineralized extracellular bone matrix was characterized by microscopy. The in vitro response of hOBs to MK-4 and 25(OH)D3 was further evaluated in two-dimensional (2D) cultures and in the 3D bone constructs applying gene expression analysis and multiplex immunoassays. Mechanical testing revealed that 25(OH)D3 induced a stiffer and MK-4 a softer or more flexible osteosphere compared with control. Combined vitamin conditions induced the same flexibility as MK-4 alone. Enhanced levels of periostin (p < 0.001) and altered distribution of collagen type I (COL-1) were found in osteospheres supplemented with MK-4. In contrast, 25(OH)D3 reduced COL-1, both at the mRNA and protein levels, increased alkaline phosphatase, and stimulated mineral deposition in the osteospheres. With the two vitamins in combination, enhanced gene expression of periostin and COL-1 was seen, as well as extended osteoid formation into the central region and increased mineral deposition all over the area. Moreover, we observed enhanced levels of osteocalcin in 2D and osteopontin in 3D cultures exposed to 25(OH)D3 alone and combined with MK-4. In conclusion, the two vitamins seem to affect bone mechanical properties differently: vitamin D enhancing stiffness and K2 conveying flexibility to bone. These effects may translate to increased fracture resistance in vivo. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

16.
ACS Appl Bio Mater ; 3(8): 5169-5181, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32954227

RESUMO

Over the past few years, surface modification of implant surfaces has gained substantial attention as a promising solution to avoid the failure of biomaterials after implantation. Although researchers suggest several strategies for surface functionalization of titanium-based implants, only a few studies have compared the osteoimmunomodulatory effects of ionic nanostructures and biofunctionalization in the same biological model. Enamel matrix derivate (EMD) and strontium are both known for their positive influences on bone cell responses. In this study, we functionalized the titanium-zirconium implant surface with EMD and strontium using an electrochemical cathodic polarization method. Afterward, we evaluated the osteoimmunomodulatory effects of EMD or strontium coated titanium-zirconium implants in the tibia of eight Gray Bastard Chinchilla rabbits. We performed 2 and 3D micro-CT, wound fluid, histologic, and histomorphometric analyses on bone tissues after 4- and 8-weeks of implantation. Although the results could indicate some differences between groups regarding the bone quality, there was no difference in bone amount or volume. EMD stimulated higher ALP activity and lower cytotoxicity in wound fluid, as well as a lower expression of inflammatory markers after 8 weeks indicating its osteoimmunomodulatory effects after implantation. Overall, the results suggested that ionic nanostructure modification and biofunctionalization might be useful in regulating the immune responses to implants.

17.
J Oral Rehabil ; 47(10): 1202-1211, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32640062

RESUMO

BACKGROUND: Symptomatic disc displacement (DD) of the temporomandibular joint (TMJ) may cause pain and limited mouth opening. The aetiopathogenesis is obscure and probably complex, which makes the diagnostic classification crude and mainly based on clinical criteria rather than disease mechanisms, and tissue characteristics. OBJECTIVES: The study aim was to characterise and quantify synovial tissue in DD, where specific cytokine patterns might serve as potential biomarkers. METHODS: An observational cohort study was performed harvesting synovial tissue from 63 patients: 44 with DD without reduction (DDwoR) and 19 with DD with reduction (DDwR). DDwoR was subdivided depending on type of onset (sudden, n = 17; delayed, n = 27), and DDwR served as the control group. Proteins were extracted from tissue samples and investigated in a multi-analytic profiling system. RESULTS: DDwoR patients had significantly higher concentrations in 12 out of 28 analysed cytokines compared to DDwR. In the same statistical model, significantly lower concentrations of interferon gamma-induced protein (IP) 10, osteoprotegerin (OPG) and RANTES were detected in DDwoR patients. Women showed significantly higher concentrations of epidermal growth factor and interleukin (IL) 1ra compared to men. DDwoR with sudden onset had significant higher concentrations of bone morphogenetic protein 4, eotaxin and IL-8 compared to DDwoR with delayed onset. CONCLUSIONS: Characterising the biomarker panel for TMJ conditions may serve as suggestible targets for disease classification and novel treatment options. The significantly lower concentrations of IP-10, OPG and RANTES could be proposed as putative markers for the separation of the studied conditions to other TMJ diseases.


Assuntos
Luxações Articulares , Disco da Articulação Temporomandibular , Citocinas , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Articulação Temporomandibular
18.
Int J Mol Sci ; 21(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414077

RESUMO

Injectable biomaterials scaffolds play a pivotal role for dental tissue regeneration, as such materials are highly applicable in the dental field, particularly when compared to pre-formed scaffolds. The defects in the maxilla-oral area are normally small, confined and sometimes hard to access. This narrative review describes different types of biomaterials for dental tissue regeneration, and also discusses the potential use of nanofibers for dental tissues. Various studies suggest that tissue engineering approaches involving the use of injectable biomaterials have the potential of restoring not only dental tissue function but also their biological purposes.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual , Dente/crescimento & desenvolvimento , Humanos , Hidrogéis/uso terapêutico , Alicerces Teciduais , Dente/efeitos dos fármacos
19.
BMC Oral Health ; 20(1): 25, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000771

RESUMO

BACKGROUND: Implantoplasty is an option in peri-implantitis treatment, but little is known about the effect on the soft tissue. The aim of the study was to characterize surface roughness following experimental implantoplasty and to examine its effect on human fibroblast growth and secretion of selected proteins. METHODS: Titanium grade IV coins were mechanically treated with six different rotating bur sequences; diamond burs or carbide burs alone, or followed by either Arkansas stone bur or silicone burs. Machined and rough-surface sandblasted, acid-etched (SLA) coins were used as control. The surface topography was characterized by scanning electron microscope and profilometer. Human gingival fibroblasts from two donors were cultured on the coins to quantify the effect on cell morphology, growth, and protein secretion by confocal microscopy and multiplex immunoassay. RESULTS: All surface roughness parameters were lower for the surfaces treated with experimental implantoplasty than for the SLA surface, and the sequence of carbide burs followed by silicone burs rendered the least rough surface of the test groups. The implantoplasty procedures changed the elemental composition of the titanium surface. High surface roughness showed a weak to moderate negative correlation to fibroblast growth, but induced a higher secretion of VEGF, IL-6 and MCP-3 to the cell medium compared to the least rough surfaces of the test groups. At day 30 fibronectin levels were higher in the SLA group. CONCLUSIONS: The surface roughness following implantoplasty demonstrated a weak to moderate negative correlation with the growth of fibroblasts. The addition of Arkansas stone and silicon burs to the experimental implantoplasty bur protocol rendered an initial increase in fibroblast growth. Implantoplasty altered the elemental composition of the titanium surface, and had an effect on the fibroblast cytokine secretion and fibronectin levels.


Assuntos
Implantes Dentários , Polimento Dentário , Fibroblastos , Titânio , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície
20.
Arch Oral Biol ; 111: 104635, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31869727

RESUMO

OBJECTIVE: The objective of the study was to examine the effect of irisin on human periodontal ligament cells (hPDLCs) growth, migration and osteogenic behaviour in vitro. MATERIALS AND METHODS: Primary hPDLCs and human osteoblasts (hOBs), used as positive controls, were cultured with irisin (10 and 100 ng/ml), and effect on cell proliferation was evaluated with 5-bromo-2`-deoxyuridine incorporation at 1, 2, and 3 days, and on migration capacity was investigated by scratch assay at 2, 6, and 24 h. Osteogenic behaviour was assessed with alkaline phosphatase activity, immunoassay at 3, 7, 14, and 21 days, and confocal laser scanning microscopy at 21 days. Mineralization was examined by Alizarin red staining at 21 days. Data were compared group wise using ANOVA tests. RESULTS: Irisin induced increased proliferation of primary hPDLCs and hOBs at all time points compared to untreated controls. This was confirmed by scratch assay where irisin enhanced migration of both hPDLCs and hOBs after 6 and 24 h compared to controls. Irisin treatment promoted osteogenic behaviour of both cell types by enhancement of extracellular matrix formation. In hPDLCs irisin increased expression of type I collagen, secretion of osteoblastogenesis related proteins osteocalcin and leptin, and calcium deposition/mineralization compared to controls at 21 days. In addition, to enhance calcium deposition/mineralization in hOBs, irisin increased expression of periostin, and secretion of osteoblastogenesis related proteins osteopontin, alkaline phosphatase and osteocalcin, as compared to controls at 21 days. CONCLUSIONS: Primary hPDLCs responded to irisin treatment with enhanced cell growth, migration, and matrix formation in vitro.


Assuntos
Osteogênese , Ligamento Periodontal , Fosfatase Alcalina , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Osteoblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA