Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Theor Appl Genet ; 137(8): 196, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105819

RESUMO

KEY MESSAGE: Integrating disease screening data and genomic data for host and pathogen populations into prediction models provides breeders and pathologists with a unified framework to develop disease resistance. Developing disease resistance in crops typically consists of exposing breeding populations to a virulent strain of the pathogen that is causing disease. While including a diverse set of pathogens in the experiments would be desirable for developing broad and durable disease resistance, it is logistically complex and uncommon, and limits our capacity to implement dual (host-by-pathogen)-genome prediction models. Data from an alternative disease screening system that challenges a diverse sweet corn population with a diverse set of pathogen isolates are provided to demonstrate the changes in genetic parameter estimates that result from using genomic data to provide connectivity across sparsely tested experimental treatments. An inflation in genetic variance estimates was observed when among isolate relatedness estimates were included in prediction models, which was moderated when host-by-pathogen interaction effects were incorporated into models. The complete model that included genomic similarity matrices for host, pathogen, and interaction effects indicated that the proportion of phenotypic variation in lesion size that is attributable to host, pathogen, and interaction effects was similar. Estimates of the stability of lesion size predictions for host varieties inoculated with different isolates and the stability of isolates used to inoculate different hosts were also similar. In this pathosystem, genetic parameter estimates indicate that host, pathogen, and host-by-pathogen interaction predictions may be used to identify crop varieties that are resistant to specific virulence mechanisms and to guide the deployment of these sources of resistance into pathogen populations where they will be more effective.


Assuntos
Resistência à Doença , Interações Hospedeiro-Patógeno , Doenças das Plantas , Zea mays , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Virulência/genética , Interações Hospedeiro-Patógeno/genética , Zea mays/genética , Zea mays/microbiologia , Modelos Genéticos , Fenótipo , Melhoramento Vegetal/métodos , Genoma de Planta , Genômica/métodos
3.
Plant Cell Environ ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924477

RESUMO

Predicting soil water status remotely is appealing due to its low cost and large-scale application. During drought, plants can disconnect from the soil, causing disequilibrium between soil and plant water potentials at pre-dawn. The impact of this disequilibrium on plant drought response and recovery is not well understood, potentially complicating soil water status predictions from plant spectral reflectance. This study aimed to quantify drought-induced disequilibrium, evaluate plant responses and recovery, and determine the potential for predicting soil water status from plant spectral reflectance. Two species were tested: sweet corn (Zea mays), which disconnected from the soil during intense drought, and peanut (Arachis hypogaea), which did not. Sweet corn's hydraulic disconnection led to an extended 'hydrated' phase, but its recovery was slower than peanut's, which remained connected to the soil even at lower water potentials (-5 MPa). Leaf hyperspectral reflectance successfully predicted the soil water status of peanut consistently, but only until disequilibrium occurred in sweet corn. Our results reveal different hydraulic strategies for plants coping with extreme drought and provide the first example of using spectral reflectance to quantify rhizosphere water status, emphasizing the need for species-specific considerations in soil water status predictions from canopy reflectance.

4.
J Biomed Mater Res A ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856491

RESUMO

Protein biotherapeutics typically require expensive cold-chain storage to maintain their fold and function. Packaging proteins in the dry state via lyophilization can reduce these cold-chain requirements. However, formulating proteins for lyophilization often requires extensive optimization of excipients that both maintain the protein folded state during freezing and drying (i.e., "cryoprotection" and "lyoprotection"), and form a cake to carry the dehydrated protein. Here we show that sweet corn phytoglycogens, which are glucose dendrimers, can act as both a protein lyoprotectant and a cake-forming agent. Phytoglycogen (PG) dendrimers from 16 different maize sources (PG1-16) were extracted via ethanol precipitation. PG size was generally consistent at ~70-100 nm for all variants, whereas the colloidal stability in water, protein contaminant level, and maximum density of cytocompatibility varied for PG1-16. 10 mg/mL PG1, 2, 9, 13, 15, and 16 maintained the activity of various proteins, including green fluorescent protein, lysozyme, ß-galactosidase, and horseradish peroxidase, over a broad range of concentrations, through multiple rounds of lyophilization. PG13 was identified as the lead excipient candidate as it demonstrated narrow dispersity, colloidal stability in phosphate-buffered saline, low protein contaminants, and cytocompatibility up to 10 mg/mL in NIH3T3 cell cultures. All dry protein-PG13 mixtures had a cake-like appearance and all frozen protein-PG13 mixtures had a Tg' of ~ -26°C. The lyoprotection and cake-forming properties of PG13 were density-dependent, requiring a minimum density of 5 mg/mL for maximum activity. Collectively these data establish PG dendrimers as a new class of excipient to formulate proteins in the dry state.

5.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38869242

RESUMO

Genomic selection and doubled haploids hold significant potential to enhance genetic gains and shorten breeding cycles across various crops. Here, we utilized stochastic simulations to investigate the best strategies for optimize a sweet corn breeding program. We assessed the effects of incorporating varying proportions of old and new parents into the crossing block (3:1, 1:1, 1:3, and 0:1 ratio, representing different degrees of parental substitution), as well as the implementation of genomic selection in two distinct pipelines: one calibrated using the phenotypes of testcross parents (GSTC scenario) and another using F1 individuals (GSF1). Additionally, we examined scenarios with doubled haploids, both with (DH) and without (DHGS) genomic selection. Across 20 years of simulated breeding, we evaluated scenarios considering traits with varying heritabilities, the presence or absence of genotype-by-environment effects, and two program sizes (50 vs 200 crosses per generation). We also assessed parameters such as parental genetic mean, average genetic variance, hybrid mean, and implementation costs for each scenario. Results indicated that within a conventional selection program, a 1:3 parental substitution ratio (replacing 75% of parents each generation with new lines) yielded the highest performance. Furthermore, the GSTC model outperformed the GSF1 model in enhancing genetic gain. The DHGS model emerged as the most effective, reducing cycle time from 5 to 4 years and enhancing hybrid gains despite increased costs. In conclusion, our findings strongly advocate for the integration of genomic selection and doubled haploids into sweet corn breeding programs, offering accelerated genetic gains and efficiency improvements.


Assuntos
Simulação por Computador , Haploidia , Modelos Genéticos , Melhoramento Vegetal , Seleção Genética , Zea mays , Zea mays/genética , Melhoramento Vegetal/métodos , Genômica/métodos , Fenótipo , Genoma de Planta , Genótipo
6.
Nat Genet ; 56(6): 1245-1256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778242

RESUMO

The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.


Assuntos
Adaptação Fisiológica , Domesticação , Secas , Raízes de Plantas , Plântula , Água , Zea mays , Zea mays/genética , Zea mays/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Plântula/genética , Água/metabolismo , Mapeamento Cromossômico , Fenótipo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Front Plant Sci ; 15: 1293307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726298

RESUMO

Sweet corn breeding programs, like field corn, focus on the development of elite inbred lines to produce commercial hybrids. For this reason, genomic selection models can help the in silico prediction of hybrid crosses from the elite lines, which is hypothesized to improve the test cross scheme, leading to higher genetic gain in a breeding program. This study aimed to explore the potential of implementing genomic selection in a sweet corn breeding program through hybrid prediction in a within-site across-year and across-site framework. A total of 506 hybrids were evaluated in six environments (California, Florida, and Wisconsin, in the years 2020 and 2021). A total of 20 traits from three different groups were measured (plant-, ear-, and flavor-related traits) across the six environments. Eight statistical models were considered for prediction, as the combination of two genomic prediction models (GBLUP and RKHS) with two different kernels (additive and additive + dominance), and in a single- and multi-trait framework. Also, three different cross-validation schemes were tested (CV1, CV0, and CV00). The different models were then compared based on the correlation between the estimated breeding values/total genetic values and phenotypic measurements. Overall, heritabilities and correlations varied among the traits. The models implemented showed good accuracies for trait prediction. The GBLUP implementation outperformed RKHS in all cross-validation schemes and models. Models with additive plus dominance kernels presented a slight improvement over the models with only additive kernels for some of the models examined. In addition, models for within-site across-year and across-site performed better in the CV0 than the CV00 scheme, on average. Hence, GBLUP should be considered as a standard model for sweet corn hybrid prediction. In addition, we found that the implementation of genomic prediction in a sweet corn breeding program presented reliable results, which can improve the testcross stage by identifying the top candidates that will reach advanced field-testing stages.

8.
Theor Appl Genet ; 137(5): 99, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598016

RESUMO

KEY MESSAGE: We find evidence of selection for local adaptation and extensive genotype-by-environment interaction in the potato National Chip Processing Trial (NCPT). We present a novel method for dissecting the interplay between selection, local adaptation and environmental response in plant breeding schemes. Balancing local adaptation and the desire for widely adapted cultivars is challenging for plant breeders and makes genotype-by-environment interactions (GxE) an important target of selection. Selecting for GxE requires plant breeders to evaluate plants across multiple environments. One way breeders have accomplished this is to test advanced materials across many locations. Public potato breeders test advanced breeding material in the National Chip Processing Trial (NCPT), a public-private partnership where breeders from ten institutions submit advanced chip lines to be evaluated in up to ten locations across the country. These clones are genotyped and phenotyped for important agronomic traits. We used these data to interrogate the NCPT for GxE. Further, because breeders submitting clones to the NCPT select in a relatively small geographic range for the first 3 years of selection, we examined these data for evidence of incidental selection for local adaptation, and the alleles underlying it, using an environmental genome-wide association study (envGWAS). We found genomic regions associated with continuous environmental variables and discrete breeding programs, as well as regions of the genome potentially underlying GxE for yield.


Assuntos
Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genótipo , Fenótipo
9.
Phytochemistry ; 218: 113957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154731

RESUMO

Plant-derived volatiles are important mediators of plant-insect interactions as they can provide cues for host location and quality, or act as direct or indirect defense molecules. The volatiles produced by Zea mays (maize) include a range of terpenes, likely produced by several of the terpene synthases (TPS) present in maize. Determining the roles of specific terpene volatiles and individual TPSs in maize-insect interactions is challenging due to the promiscuous nature of TPSs in vitro and their potential for functional redundancy. In this study, we used metabolite GWAS of a sweetcorn diversity panel infested with Spodoptera frugiperda (fall armyworm) to identify genetic correlations between TPSs and individual volatiles. This analysis revealed a correlation between maize terpene synthase 1 (ZmTPS1) and emission of the monoterpene volatiles linalool and ß-myrcene. Electroantennogram assays showed gravid S. frugiperda could detect both linalool and ß-myrcene. Quantification of headspace volatiles in a maize tps1 loss-of-function mutant confirmed that ZmTPS1 is an important contributor to linalool and ß-myrcene emission in maize. Furthermore, pairwise choice assays between tps1 mutant and wild-type plants showed that ZmTPS1, and by extension its volatile products, aid host location in the chewing insect S. frugiperda, yet repel the sap-sucking pest, Rhopalosiphum maidis (corn leaf aphid). On the other hand, ZmTPS1 had no impact on indirect defense via the recruitment of the parasitoid Cotesia marginiventris. ZmTPS1 is therefore an important mediator of the interactions between maize and its insect pests.


Assuntos
Monoterpenos Acíclicos , Alquil e Aril Transferases , Terpenos , Zea mays , Animais , Terpenos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Monoterpenos/metabolismo , Insetos , Spodoptera
10.
Front Plant Sci ; 14: 1253706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965021

RESUMO

Because of its wide distribution, high yield potential, and short cycle, the potato has become essential for global food security. However, the complexity of tetrasomic inheritance, the high level of heterozygosity of the parents, the low multiplication rate of tubers, and the genotype-by-environment interactions impose severe challenges on tetraploid potato-breeding programs. The initial stages of selection take place in experiments with low selection accuracy for many of the quantitative traits of interest, for example, tuber yield. The goal of this study was to investigate the contribution of incorporating a family effect in the estimation of the total genotypic effect and selection of clones in the initial stage of a potato-breeding program. The evaluation included single trials (STs) and multi-environment trials (METs). A total of 1,280 clones from 67 full-sib families from the potato-breeding program at Universidade Federal de Lavras were evaluated for the traits total tuber yield and specific gravity. These clones were distributed in six evaluated trials that varied according to the heat stress level: without heat stress, moderate heat stress, and high heat stress. To verify the importance of the family effect, models with and without the family effect were compared for the analysis of ST and MET data for both traits. The models that included the family effect were better adjusted in the ST and MET data analyses for both traits, except when the family effect was not significant. Furthermore, the inclusion of the family effect increased the selective efficiency of clones in both ST and MET analyses via an increase in the accuracy of the total genotypic value. These same models also allowed the prediction of clone effects more realistically, as the variance components associated with family and clone effects within a family were not confounded. Thus, clonal selection based on the total genotypic value, combining the effects of family and clones within a family, proved to be a good alternative for potato-breeding programs that can accommodate the logistic and data tracking required in the breeding program.

11.
Curr Opin Biotechnol ; 83: 102968, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515935

RESUMO

Over the last decades, significant strides were made in understanding the biochemical factors influencing the nutritional content and flavor profile of fruits and vegetables. Product differentiation in the produce aisle is the natural consequence of increasing consumer power in the food industry. Cotton-candy grapes, specialty tomatoes, and pineapple-flavored white strawberries provide a few examples. Given the increased demand for flavorful varieties, and pressing need to reduce micronutrient malnutrition, we expect breeding to increase its prioritization toward these traits. Reaching this goal will, in part, necessitate knowledge of the genetic architecture controlling these traits, as well as the development of breeding methods that maximize their genetic gain. Can artificial intelligence (AI) help predict flavor preferences, and can such insights be leveraged by breeding programs? In this Perspective, we outline both the opportunities and challenges for the development of more flavorful and nutritious crops, and how AI can support these breeding initiatives.


Assuntos
Inteligência Artificial , Melhoramento Vegetal , Produtos Agrícolas/genética , Fenótipo , Aprendizado de Máquina
12.
Plant Physiol ; 193(2): 1456-1478, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37339339

RESUMO

Molecular mechanisms that distinguish the synthesis of semi-crystalline α-glucan polymers found in plant starch granules from the synthesis of water-soluble polymers by nonplant species are not well understood. To address this, starch biosynthetic enzymes from maize (Zea mays L.) endosperm were isolated in a reconstituted environment using yeast (Saccharomyces cerevisiae) as a test bed. Ninety strains were constructed containing unique combinations of 11 synthetic transcription units specifying maize starch synthase (SS), starch phosphorylase (PHO), starch branching enzyme (SBE), or isoamylase-type starch debranching enzyme (ISA). Soluble and insoluble branched α-glucans accumulated in varying proportions depending on the enzyme suite, with ISA function stimulating distribution into the insoluble form. Among the SS isoforms, SSIIa, SSIII, and SSIV individually supported the accumulation of glucan polymer. Neither SSI nor SSV alone produced polymers; however, synergistic effects demonstrated that both isoforms can stimulate α-glucan accumulation. PHO did not support α-glucan production by itself, but it had either positive or negative effects on polymer content depending on which SS or a combination thereof was present. The complete suite of maize enzymes generated insoluble particles resembling native starch granules in size, shape, and crystallinity. Ultrastructural analysis revealed a hierarchical assembly starting with subparticles of approximately 50 nm diameter that coalesce into discrete structures of approximately 200 nm diameter. These are assembled into semi-crystalline α-glucan superstructures up to 4 µm in length filling most of the yeast cytosol. ISA was not essential for the formation of such particles, but their abundance was increased dramatically by ISA presence.


Assuntos
Endosperma , Sintase do Amido , Saccharomyces cerevisiae , Zea mays/genética , Proteínas de Plantas/química , Amido , Glucanos , Sintase do Amido/química
13.
Front Plant Sci ; 13: 868581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874027

RESUMO

The largest family of disease resistance genes in plants are nucleotide-binding site leucine-rich repeat genes (NLRs). The products of these genes are responsible for recognizing avirulence proteins (Avr) of phytopathogens and triggering specific defense responses. Identifying NLRs in plant genomes with standard gene annotation software is challenging due to their multidomain nature, sequence diversity, and clustered genomic distribution. We present the results of a genome-wide scan and comparative analysis of NLR loci in three coffee species (Coffea canephora, Coffea eugenioides and their interspecific hybrid Coffea arabica). A total of 1311 non-redundant NLR loci were identified in C. arabica, 927 in C. canephora, and 1079 in C. eugenioides, of which 809, 562, and 695 are complete loci, respectively. The NLR-Annotator tool used in this study showed extremely high sensitivities and specificities (over 99%) and increased the detection of putative NLRs in the reference coffee genomes. The NLRs loci in coffee are distributed among all chromosomes and are organized mostly in clusters. The C. arabica genome presented a smaller number of NLR loci when compared to the sum of the parental genomes (C. canephora, and C. eugenioides). There are orthologous NLRs (orthogroups) shared between coffee, tomato, potato, and reference NLRs and those that are shared only among coffee species, which provides clues about the functionality and evolutionary history of these orthogroups. Phylogenetic analysis demonstrated orthologous NLRs shared between C. arabica and the parental genomes and those that were possibly lost. The NLR family members in coffee are subdivided into two main groups: TIR-NLR (TNL) and non-TNL. The non-TNLs seem to represent a repertoire of resistance genes that are important in coffee. These results will support functional studies and contribute to a more precise use of these genes for breeding disease-resistant coffee cultivars.

14.
Plant Genome ; 15(3): e20235, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35818699

RESUMO

Genomic selection (GS) has proven to be an effective method to increase genetic gain rates and accelerate breeding cycles in many crop species. However, its implementation requires large investments to phenotype of the training population and for routine genotyping. Alfalfa (Medicago sativa L.) is one of the major cultivated forage legumes, showing high-quality nutritional value. Alfalfa breeding is usually carried out by phenotypic recurrent selection and is commonly done at the family level. The application of GS in alfalfa could be simplified and less costly by genotyping and phenotyping families in bulks. For this study, an alfalfa reference population composed of 142 full-sib and 35 half-sib families was bulk-genotyped using target enrichment sequencing and phenotyped for dry matter yield (DMY) and canopy height (CH) in Florida, USA. Genotyping of the family bulks with 17,707 targeted probes resulted in 114,945 single-nucleotide polymorphisms. The markers revealed a population structure that matched the mating design, and the linkage disequilibrium slowly decayed in this breeding population. After exploring multiple prediction scenarios, a strategy was proposed including data from multiple harvests and accounting for the G×E in the training population, which led to a higher predictive ability of up to 38 and 24% for DMY and CH, respectively. Although this study focused on the implementation of GS in alfalfa families, the bulk methodology and the prediction schemes used herein could guide future studies in alfalfa and other crops bred in bulks.


Assuntos
Medicago sativa , Melhoramento Vegetal , Genômica/métodos , Desequilíbrio de Ligação , Medicago sativa/genética
15.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131943

RESUMO

Although they are staple foods in cuisines globally, many commercial fruit varieties have become progressively less flavorful over time. Due to the cost and difficulty associated with flavor phenotyping, breeding programs have long been challenged in selecting for this complex trait. To address this issue, we leveraged targeted metabolomics of diverse tomato and blueberry accessions and their corresponding consumer panel ratings to create statistical and machine learning models that can predict sensory perceptions of fruit flavor. Using these models, a breeding program can assess flavor ratings for a large number of genotypes, previously limited by the low throughput of consumer sensory panels. The ability to predict consumer ratings of liking, sweet, sour, umami, and flavor intensity was evaluated by a 10-fold cross-validation, and the accuracies of 18 different models were assessed. The prediction accuracies were high for most attributes and ranged from 0.87 for sourness intensity in blueberry using XGBoost to 0.46 for overall liking in tomato using linear regression. Further, the best-performing models were used to infer the flavor compounds (sugars, acids, and volatiles) that contribute most to each flavor attribute. We found that the variance decomposition of overall liking score estimates that 42% and 56% of the variance was explained by volatile organic compounds in tomato and blueberry, respectively. We expect that these models will enable an earlier incorporation of flavor as breeding targets and encourage selection and release of more flavorful fruit varieties.


Assuntos
Mirtilos Azuis (Planta)/metabolismo , Frutas/química , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Mirtilos Azuis (Planta)/genética , Comportamento do Consumidor , Regulação da Expressão Gênica de Plantas/fisiologia , Humanos , Solanum lycopersicum/genética , Aprendizado de Máquina , Proteínas de Plantas/genética , Paladar , Compostos Orgânicos Voláteis
17.
Plant Sci ; 311: 111019, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482920

RESUMO

Genomics-based diversity analysis of natural vanilla populations is important in order to guide conservation efforts and genetic improvement through plant breeding. Vanilla is a cultivated, undomesticated spice that originated in Mesoamerica prior to spreading globally through vegetative cuttings. Vanilla extract from the commercial species, mainly V. planifolia and V. × tahitensis, is used around the world as an ingredient in foods, beverages, cosmetics, and pharmaceuticals. The global reliance on descendants of a few foundational clones in commercial production has resulted in an industry at heightened risk of catastrophic failure due to extremely narrow genetic diversity. Conversely, national and institutional collections including those near the center of cultivation contain previously undiscovered diversity that could bolster the genetic improvement of vanilla and guide conservation efforts. Towards this goal, an international vanilla genotyping effort generated and analyzed 431,204 single nucleotide polymorphisms among 412 accessions and 27 species from eight collections. Phylogenetic and STRUCTURE analysis sorted vanilla by species and identified hybrid accessions. Principal Component Analysis and the Fixation Index (FST) were used to refine relationships among accessions and showed differentiation among species. Analysis of the commercial species split V. planifolia into three types with all V. × tahitensis accessions being most similar to V. planifolia type 2. Finally, an in-depth analysis of V. × tahitensis identified seven V. planifolia and six V. odorata accessions as most similar to the estimated parental genotypes providing additional data in support of the current hybrid theory. The prevalence of probable V. × tahitensis parental accessions from Belize suggests that V. × tahitensis could have originated from this area and highlights the need for vanilla conservation throughout Central and South America. The genetic groupings among accessions, particularly for V. planifolia, can now be used to focus breeding efforts on fewer accessions that capture the greatest diversity.


Assuntos
Genômica/classificação , Melhoramento Vegetal/métodos , Vanilla/classificação , Vanilla/genética , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Genes de Plantas , Variação Genética , Genótipo , Técnicas de Genotipagem , Filogenia
18.
G3 (Bethesda) ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544139

RESUMO

Genomic prediction integrates statistical, genomic, and computational tools to improve the estimation of breeding values and increase genetic gain. Due to the broad diversity in mating systems, breeding schemes, propagation methods, and unit of selection, no universal genomic prediction approach can be applied in all crops. In a genome-wide family prediction (GWFP) approach, the family is the basic unit of selection. We tested GWFP in two loblolly pine (Pinus taeda L.) datasets: a breeding population composed of 63 full-sib families (5-20 individuals per family), and a simulated population with the same pedigree structure. In both populations, phenotypic and genomic data was pooled at the family level in silico. Marker effects were estimated to compute genomic estimated breeding values (GEBV) at the individual and family (GWFP) levels. Less than six individuals per family produced inaccurate estimates of family phenotypic performance and allele frequency. Tested across different scenarios, GWFP predictive ability was higher than those for GEBV in both populations. Validation sets composed of families with similar phenotypic mean and variance as the training population yielded predictions consistently higher and more accurate than other validation sets. Results revealed potential for applying GWFP in breeding programs whose selection unit are family, and for systems where family can serve as training sets. The GWFP approach is well suited for crops that are routinely genotyped and phenotyped at the plot-level, but it can be extended to other breeding programs. Higher predictive ability obtained with GWFP would motivate the application of genomic prediction in these situations.


Assuntos
Modelos Genéticos , Seleção Genética , Genômica , Genótipo , Humanos , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
19.
Hortic Res ; 8(1): 66, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33790262

RESUMO

Breeding crops for improved flavor is challenging due to the high cost of sensory evaluation and the difficulty of connecting sensory experience to chemical composition. The main goal of this study was to identify the chemical drivers of sweetness and consumer liking for fresh strawberries (Fragaria × ananassa). Fruit of 148 strawberry samples from cultivars and breeding selections were grown and harvested over seven years and were subjected to both sensory and chemical analyses. Each panel consisted of at least 100 consumers, resulting in more than 15,000 sensory data points per descriptor. Three sugars, two acids and 113 volatile compounds were quantified. Consumer liking was highly associated with sweetness intensity, texture liking, and flavor intensity, but not sourness intensity. Partial least square analyses revealed 20 volatile compounds that increased sweetness perception independently of sugars; 18 volatiles that increased liking independently of sugars; and 15 volatile compounds that had positive effects on both. Machine learning-based predictive models including sugars, acids, and volatiles explained at least 25% more variation in sweetness and liking than models accounting for sugars and acids only. Volatile compounds such as γ-dodecalactone; 5-hepten-2-one, 6-methyl; and multiple medium-chain fatty acid esters may serve as targets for breeding or quality control attributes for strawberry products. A genetic association study identified two loci controlling ester production, both on linkage group 6 A. Co-segregating makers in these regions can be used for increasing multiple esters simultaneously. This study demonstrates a paradigm for improvement of fruit sweetness and flavor in which consumers drive the identification of the most important chemical targets, which in turn drives the discovery of genetic targets for marker-assisted breeding.

20.
Nat Commun ; 12(1): 1227, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623026

RESUMO

Sweet corn is one of the most important vegetables in the United States and Canada. Here, we present a de novo assembly of a sweet corn inbred line Ia453 with the mutated shrunken2-reference allele (Ia453-sh2). This mutation accumulates more sugar and is present in most commercial hybrids developed for the processing and fresh markets. The ten pseudochromosomes cover 92% of the total assembly and 99% of the estimated genome size, with a scaffold N50 of 222.2 Mb. This reference genome completely assembles the large structural variation that created the mutant sh2-R allele. Furthermore, comparative genomics analysis with six field corn genomes highlights differences in single-nucleotide polymorphisms, structural variations, and transposon composition. Phylogenetic analysis of 5,381 diverse maize and teosinte accessions reveals genetic relationships between sweet corn and other types of maize. Our results show evidence for a common origin in northern Mexico for modern sweet corn in the U.S. Finally, population genomic analysis identifies regions of the genome under selection and candidate genes associated with sweet corn traits, such as early flowering, endosperm composition, plant and tassel architecture, and kernel row number. Our study provides a high-quality reference-genome sequence to facilitate comparative genomics, functional studies, and genomic-assisted breeding for sweet corn.


Assuntos
Evolução Molecular , Genética Populacional , Genoma de Planta , Zea mays/genética , Alelos , Elementos de DNA Transponíveis/genética , Loci Gênicos , Haplótipos/genética , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA , Zea mays/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA